• 제목/요약/키워드: }{\zeta}{\

검색결과 977건 처리시간 0.032초

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

CONTROLLABILITY OF NONLINEAR DELAY PARABOLIC EQUATIONS UNDER BOUNDARY CONTROL

  • Park, Jong-Yeoul;Kwun, Young-Chel;Jeong, Jin-Mun
    • 대한수학회지
    • /
    • 제33권2호
    • /
    • pp.333-346
    • /
    • 1996
  • Let $A(\zeta, \partial)$ be a second order uniformly elliptic operator $$ A(\zeta, \partial )u = -\sum_{j, k = 1}^{n} \frac{\partial\zeta_i}{\partial}(a_{jk}(\zeta)\frac{\partial\zeta_k}{\partial u}) + \sum_{j = 1}^{n}b_j(\zeta)\frac{\partial\zeta_j}{\partial u} + c(\zeta)u $$ with real, smooth coefficients $a_{j, k}, b_j$, c defined on $\zeta \in \Omega, \Omega$ a bounded domain in $R^n$ with a sufficiently smooth boundary $\Gamma$.

  • PDF

ZETA FUNCTIONS FOR ONE-DIMENSIONAL GENERALIZED SOLENOIDS

  • Yi, In-Hyeop
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권2호
    • /
    • pp.141-155
    • /
    • 2011
  • We compute zeta functions of 1-solenoids. When our 1-solenoid is nonorientable, we compute Artin-Mazur zeta function and Lefschetz zeta function of the 1-solenoid and its orientable double cover explicitly in terms of adjacency matrices and branch points. And we show that Artin-Mazur zeta function of orientable double cover is a rational function and a quotient of Artin-Mazur zeta function and Lefschetz zeta function of the 1-solenoid.

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • 제19권2호
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

경계적분방정식의 수치해법 -축대칭 유동- (A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow-)

  • 강창구
    • 대한조선학회지
    • /
    • 제27권3호
    • /
    • pp.38-46
    • /
    • 1990
  • 본 보에서는 축대칭포텐시얼유동에 대한 경계적분방정식의 해법이 제시된다. 이 문제는 고리용출점과 고리보오텍스에 의해서 표시되는데 이들의 세기는 한 구간내에서 매개변수 $\zeta$의 선형함수로 근사된다. 물체의 형상은 3차 B-spline으로 표시된다. 속도가 계산되는 점이 고리용출점이나 고리보오텍스에 접근할 때의 극한표현식이 $\zeta{ln}\zeta$항까지 유도된다. 수치계산에서 양 옆구간에 의한 주치적분은 정확하게 서로 상쇄되기 때문에 특이점에 의한 유기속도중 $\(\frac{1}{\zeta}\)$에 비례하는 항은 계산에서 제외된다. 그리고 ${ln}\zeta$에 비례하는 항과 $\zeta{ln}\zeta$에 비례하는 항은 해석적으로 적분이 가능하기 때문에 수치계산에서 이에 비례하는 항을 빼고 계산한 후 해석적으로 계산한 값을 더해 준다. 기타 수치적분은 4점 Gaussian Quadrature 공식에 의해서 수행되었다. 수렴률을 정하기 위하여 구간의 개수에 따른 평균자승근오차를 조사하였으며, 이 방법의 수렴률은 2에 접근점이 밝혀졌다.

  • PDF

마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정 (Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel)

  • 한수동;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF

개선된 효율을 가지는 양방향 Zeta-Flyback 컨버터 (Bidirectional Zeta-Flyback Converter for Improved Efficiency)

  • 정문규;권영안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.844-849
    • /
    • 2012
  • 양방향 컨버터는 신재생에너지를 이용하는 전력시스템, 무정전 전원 공급장치, 전기차 등 여러분야에서 사용되며, 양방향 절연 컨버터는 양방향 비절연 컨버터보다 높은 신뢰성을 갖지만 효율이 낮다는 단점이 있다. 본 논문에서는 개선된 효율을 가지는 절연된 양방향 Zeta-Flyback 컨버터를 제안한다. 이 컨버터는 양방향 Flyback 컨버터와 양방향 Zeta 컨버터의 중첩으로서 순방향 동작과 역방향 동작에서 전력 흐름이 변압기와 소자를 통해 수행되어 변압기 이용률이 증가하고, 출력 전압은 스위치의 일정 주파수 PWM의 듀티비에 의해 제어된다. 제안된 양방향 Zeta-Flyback 컨버터와 양방향 Flyback 컨버터를 비교하면 제안된 양방향 Zeta-Flyback 컨버터가 더 높은 효율을 갖으며 이를 시뮬레이션과 실험을 통하여 확인하였다.

A NOTE ON GENOCCHI-ZETA FUNCTIONS

  • Park, Kyoung-Ho
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.399-405
    • /
    • 2009
  • In this paper, we study the Genoochi-zeta functions which are entire functions in whole complex s-plane these zeta functions have the values of the Genocchi numbers and the Genoochi polynomials at negative integers respectively. That is ${\zeta}_G(1-k)={\frac{G_k}{k}}$ and ${\zeta}_G(1-k,x)={\frac{G_k(x)}{k}}$.

SPECIAL VALUES AND INTEGRAL REPRESENTATIONS FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

  • Hu, Su;Kim, Daeyeoul;Kim, Min-Soo
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.185-210
    • /
    • 2018
  • The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: $${\zeta}_E(s,x)={\sum_{n=0}^{\infty}}{\frac{(-1)^n}{(n+x)^s}}$$. In this paper, by using the method of Fourier expansions, we shall evaluate several integrals with integrands involving Hurwitz-type Euler zeta functions ${\zeta}_E(s,x)$. Furthermore, the relations between the values of a class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational arguments have also been given.