• Title/Summary/Keyword: {1,2}-inverse

Search Result 1,159, Processing Time 0.037 seconds

THE APPLICATIONS OF ADDITIVE MAP PRESERVING IDEMPOTENCE IN GENERALIZED INVERSE

  • Yao, Hongmei;Fan, Zhaobin;Tang, Jiapei
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.541-547
    • /
    • 2008
  • Suppose R is an idempotence-diagonalizable ring. Let n and m be two arbitrary positive integers with $n\;{\geq}\;3$. We denote by $M_n(R)$ the ring of all $n{\times}n$ matrices over R. Let ($J_n(R)$) be the additive subgroup of $M_n(R)$ generated additively by all idempotent matrices. Let ($D=J_n(R)$) or $M_n(R)$. In this paper, by using an additive idem potence-preserving result obtained by Coo (see [4]), I characterize (i) the additive preservers of tripotence from D to $M_m(R)$ when 2 and 3 are units of R; (ii) the additive preservers of inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses, {1, 2}-inverses) from $M_n(R)$ to $M_n(R)$ when 2 and 3 are units of R.

  • PDF

A Study on the extended Inverse Chebyshev Function (확장된 Inverse Chebyshev함수에 관한 연구)

  • 박민식;신홍규;신건순;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 1987
  • In this paper, the extended inverse Chebyshev function have been derived from Chebyshev function. We presented normalized biquads coefficients of n=5, 6 for passband attenuation Ap(dB)=0.1, 0.2, 0.5, 1.0, 2.0, 3.0 and stopband frequency Ws(rad/s)=1.2, 1.3, 1.4, 1.5, 1.6. A designed low-pass filter from extended inverse Chebyshev transfer function produces the magnitude haracteristic which is maximally flat in the passband and equalripple in the stopband as shown in fig. 3(c), (d). Finally, it showed the magnitude and loss characteristics through realistic circuit simulation, and presented element values.

  • PDF

Algorithms for Computing Inverses in Finite Fields using Special ONBs (특수한 정규기저를 이용한 유한체위에서의 역원 계산 알고리즘에 관한 연구)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.867-873
    • /
    • 2014
  • Since the computation of a multiplicative inverse using MONB includes many squarings and thus calculating inverse is expensive, we, in this paper, propose a low cost inverse algorithm requiring $nb(2^nm-1)+w(2^nm-1)-2$ multiplications and $2^n-1$ squarings to compute an inverse in $GF(2^{2^nm})^*$ using special normal basis over $GF(2^{2^n})$, and give some implementation results using the algorithm and, show that the timing results of our implementation is faster than that of Itoh et al.'s method.

THE GENERALIZED WEIGHTED MOORE-PENROSE INVERSE

  • Sheng, Xingping;Chen, Guoliang
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.407-413
    • /
    • 2007
  • In this paper, we definite a generalized weighted Moore-Penrose inverse $A^{+}_{M,N}$ of a given matrix A, and give the necessary and sufficient conditions for its existence. We also prove its uniqueness and give a representation of it. In the end we point out this generalized inverse is also a prescribed rang T and null space S of {2}-(or outer) inverse of A.

INVERSE SYSTEM AND ARTINIAN O-SEQUENCES OF CODIMENSION 4

  • Shin, Dong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.513-518
    • /
    • 2007
  • There is a one to one correspondence between Artinian algebras $k[x_1,...,x_n]/Ann(M)$ and finitely generated $k[x_1,...,x_n]-submodules$ M of $k[y_1,...,y_n]$ by Inverse System. In particular, any Artinian level algebra $k[x_1,...,x_n]/Ann(M)$ can be obtained when M is finitely generated by only maximal degree generators. We prove that H = (1, 4, 8, 13,..., 27, 8, 2) is not a level Artinian O-sequence using this inverse system.

THE GENERALIZED INVERSE ${A_{T,*}}^{(2)}$ AND ITS APPLICATIONS

  • Cao, Chong-Guang;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.155-164
    • /
    • 2003
  • The existence and representations of some generalized inverses, including ${A_{T,*}}^{(2)},\;{A_{T,*}}^{(1,2)},\;{A_{T,*}}^{(2,3)},\;{A_{*,S}}^{(2)},\;{A_{*,S}}^{(1,2)}\;and\;{A_{*,S}}^{(2,4)}$, are showed. As applications, the perturbation theory for the generalized inverse {A_{T,S}}^{(2)} and the perturbation bound for unique solution of the general restricted system $A_{x}$ = b(dim(AT)=dimT, $b{\in}AT$ and $x{\in}T$) are studied. Moreover, a characterization and representation of the generalized inverse ${A_{T,*}}^{(2)}$ is obtained.

THE PERTURBATION FOR THE DRAZIN INVERSE

  • Wu, Chi-Ye;Huang, Ting-Zhu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.267-273
    • /
    • 2009
  • A representation for the Drazin inverse of an arbitrary square matrix in terms of the eigenprojection was established by Rothblum [SIAM J. Appl. Math., 31(1976) :646-648]. In this paper perturbation results based on the representation for the Darzin inverse $A^D\;=\;(A-X)^{-1}(I-X)$ are developed. Norm estimates of $\parallel(A+E)^D-A^D\parallel_2/\parallel A^D\parallel_2$ and $\parallel(A+E)^#-A^D\parallel_2/\parallel A^D\parallel_2$ are derived when IIEI12 is small.

  • PDF

INVERSE ENERGY CASCADE AND MAGNETIC HELICITY IN 3-DIMENSIONAL DRIVEN ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoon-Kyu;Cho, Jun-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • We present numerical simulations of inverse energy cascade and in driven three-dimensional (3D) electron magnetohydrodynamic (EMHD) turbulence. It has been known that inverse energy cascade only occurs in two-dimensional (2D) turbulence. However, we demonstrate that inverse energy cascade occurs in 3D driven EMHD turbulence. When magnetic helicity is injected on a small-scale, magnetic energy goes up to larger scales. The energy spectrum clearly shows inverse energy cascade. At the same time, magetic helicity spectrum also shows that the helicity goes up to larger scales. We obviously confirm inverse energy cascade. Net magnetic helicity for scales larger than the driving scale shows linear growth, and magnetic energy shows non-linear growth. On the other hand, when we drived turbulence without magnetic helicity, we do not observe inverse energy cascade.

  • PDF

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

  • KAMARAJ K.;SIVAKUMAR K. C.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.297-310
    • /
    • 2005
  • The concept of the Moore-Penrose inverse in an indefinite inner product space is introduced. Extensions of some of the formulae in the Euclidean space to an indefinite inner product space are studied. In particular range-hermitianness is completely characterized. Equivalence of a weighted generalized inverse and the Moore-Penrose inverse is proved. Finally, methods of computing the Moore-Penrose inverse are presented.

EFFICIENT ALGORITHM FOR FINDING THE INVERSE AND THE GROUP INVERSE OF FLS $\gamma-CIRCULANT$ MATRIX

  • JIANG ZHAO-LIN;XU ZONG-BEN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.45-57
    • /
    • 2005
  • An efficient algorithm for finding the inverse and the group inverse of the FLS $\gamma-circulant$ matrix is presented by Euclidean algorithm. Extension is made to compute the inverse of the FLS $\gamma-retrocirculant$ matrix by using the relationship between an FLS $\gamma-circulant$ matrix and an FLS $\gamma-retrocirculant$ matrix. Finally, some examples are given.