• 제목/요약/키워드: {\varepsilon}$ model

검색결과 912건 처리시간 0.024초

Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Lee, Jong Sup
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.344-353
    • /
    • 2019
  • The wakes behind a square cylinder were simulated using two-equation turbulence models, $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors' previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The $k-{\varepsilon}$ model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ${\varepsilon}-equation$. In the RNG $k-{\varepsilon}$ model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG $k-{\varepsilon}$ model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.

수치풍동 기법을 이용한 정사각형 건물 주위의 풍압계수에 관한 연구 (A NUMERICAL SIMULATION OF THE PRESSURE COEFFICIENT AROUND A CUBIC BUILDING MODEL)

  • 여재현;허남건;원찬식;김사량;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.162-166
    • /
    • 2007
  • In the present study, the pressure coefficient of a cubic building model is numerically simulated. Three turbulence models of standard ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES are adopted and the results are compared with the available experimental data. From the results, it has been found that RNG ${\kappa}-{\varepsilon}$ turbulence model and LES turbulence model were shown to predict fairly well the experimental pressure coefficient. In contrast, the results of the standard ${\kappa}-{\varepsilon}$ turbulence model showed large discrepancies in pressure coefficient on the side and top surfaces of the cubic building, which limits the applicability of the standard ${\kappa}-{\varepsilon}$ turbulence model on wind engineering.

  • PDF

정체유동에서의 난류 부상 화염 해석을 위한 Reynolds 응력 모델의 검증 (Assessment of Reynolds Stress Model for the Analysis of Floating Flames in Stagnating Flows)

  • 임용훈;허강열
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.49-61
    • /
    • 2002
  • Numerical simulation is performed for stagnating turbulent flows of impinging and countercurrent jets by the Reynolds stress model(RSM). Results are compared with those of the ${\kappa}-{\varepsilon}$ model and available data to assess the flow characteristics and turbulence modes. Three variants of the RSM tested are those of Gibson and Launder(GL), Craft and Launder(GL-CL) and Speziale, Sarkar and Gatski(SSG). As well known, the ${\kappa}-{\varepsilon}$ model overestimates turbulent kinetic energy near the wall significantly. Although the RSM is superior to the ${\kappa}-{\varepsilon}$ model, it shows considerable difference according to how the redistributive pressure-strain term is modeled. Results of the RSM for countercurrent jets are improved with the modified coefficients for the dissipation rate, $C_{{\varepsilon}1}\;and\;C_{{\varepsilon}2}$ suggested by Champion and Libby. The performance of the three variants of the RSM model for stagnating flows are assessed.

  • PDF

이차원 표층방류 밀도분류의 k-$\varepsilon$ 모델에 의한 수치해석 (Numerical Analysis of Two-Dimensional Surface Buoyant Jets by k-$\varepsilon$ Turbulence Model)

  • 허재영;최한기;강주복
    • 한국해안해양공학회지
    • /
    • 제3권2호
    • /
    • pp.81-91
    • /
    • 1991
  • 이차원 표층방류 밀도분류의 거동을 조사하기 위하여 k-$\varepsilon$ 이방정식 수치모델을 개발하였다. 평균류 및 난류수송에 관한 계산결과를 실험결과와 비교하여 본 수치모델이 이들의 흐름특성을 양호하게 예측할 수 있음을 확인하였다. 방류구에 있어서의 k 및 $\varepsilon$의 설정이 표층 밀도분류의 흐름에 미치는 영향을 정량적으로 평가하였다. 또한, 많은 연구에서 무시되어 왔던 $\varepsilon$ 방정식에 있어서의 부력생성항 및 계수 $C\varepsilon$$_3$의 값에 대한 검토를 행하여 흐름의 전개에 미치는 영향을 조사하였다. 이차원표층 밀도분류에 관한 계산결과를 제시하고 중요한 몇가지 흐름특성에 대하여 토의하였다.

  • PDF

난류모델에 따른 건물주위의 유동 예측 (A Prediction of the Flow Characteristics around Buildings with the Turbulent Models)

  • 이승호;여재현;허남건;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.168-171
    • /
    • 2008
  • In the present study, turbulent flows around cubic and L-shape buildings were simulated numerically. Standard ${\kappa}$-$\varepsilon$, RNG ${\kappa}$-$\varepsilon$, LES turbulence models were adopted for the present simulation. The wind pressure coefficients from these results were compared with the available experimental data. The result of RNG ${\kappa}$-$\varepsilon$ and LES turbulent models gave better prediction than that of standard ${\kappa}$-$\varepsilon$ turbulent model which is widely used in the turbulent flow simulation.

  • PDF

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價 (Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

Confidence Intervals in Three-Factor-Nested Variance Component Model

  • Kang, Kwan-Joong
    • Journal of the Korean Statistical Society
    • /
    • 제22권1호
    • /
    • pp.39-54
    • /
    • 1993
  • In the three-factor nested variance component model with equal numbers in the cells given by $y_{ijkm} = \mu + A_i + B_{ij} + C_{ijk} + \varepsilon_{ijkm}$, the exact confidence intervals of the variance component of $\sigma^2_A, \sigma^2_B, \sigma^2_C, \sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_{\varepsilon}, \sigma^2_B/\sigma^2_{\varepsilon}, \sigma^2_C/\sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_C, \sigma^2_B/\sigma^2_C$ and $\sigma^2_A/\sigma^2_B$ are not found out yet. In this paper approximate lower and upper confidence intervals are presented.

  • PDF

표면에 부착된 장애물 주위의 난류전단유동에 관한 수치해석 (Numerical Simulation on Turbulent Shear Flows over Surface-Mounted Obstacles)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2593-2600
    • /
    • 1996
  • A modified k-$\varepsilon$ turbulence model having a generality is proposed in the present study, in which the constant $C_{\varepsilon2}$in the $\varepsilon$-equation is simply changed as a functional form of a new parameter both satisfying the tensor invariant condition and representing the extra straining effect on complex shear flows. With this model turbulent shear flows over two-dimensional obstacles placed in a channel are numerically studied for different blockage ratios and aspect ratios. Comparing with the available experimental data, the predicted results with the present model provide definite improvements over the standard model's results and work fairly well with the experimental data on the size of the recirculation zone, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds stresses.

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.