본 연구에서는 개별 관광객을 Simulation하는 모형을 개발하고. 이를 이용해 첨단 관광정보시스템 하에서의 여행객의 관광지 선택행태 변화와 관광 수요 패턴의 변화를 분석하였다. 관광객의 여행계획 목적함수는 기대효용 최대화로 가정하였고, 교통망에서 순차적 방문 계획 해를 얻기 위해 Traveling Salesman Problem(TSP)을 이용하였다. 단 관광객들의 경우 하루 동안 주어진 여행시간과 여행예산의 제약이 존재하기 때문에, 제약이 존재하는 TSP. 즉 Prize-Collecting TSP를 이용하였으며, 하루 이상 관광지에 체류하는 관광객들의 여행계획 문제를 풀기위해 Prize-Collecting Multiple-Day TTaveling Salesman Problem(PC MD TSP)을 개발하였다 관광 정보의 형태는 사전정보, Oft-line 정보. On-line 정보로 구분하여, 전체 관광객들을 이용 가능한 정보 형태에 따라 3가지 계층으로 구분하였으며. Simulation을 통해 각 관광지의 관광객을 계산하였다. 개발된 모형을 통해 Ubiquitous 환경에서의 On-line 정보가 관광객들뿐만 아니라 관광지에도 수요증가에 따른 운영 이익 증대를 가져다 줄 수 있음을 확인하였다.
본 논문에서는 개미 집단 시스템(ant colony system)을 통한 순회 외판원 문제(traveling salesman problem)를 효과적으로 해결하기 위해 GPU 기반 병렬 알고리즘을 설계 구현하였다. TSP에서 동시에 수백 또는 수천의 탐색 여정(tour)을 생성하는 반복 과정을 GPU의 작업 병렬성을 활용하여 처리성능을 개선하고, 페로몬 자취 데이터의 업데이트 과정은 32x32의 쓰레드 블럭을 사용하여 데이터 병렬성을 적극 활용하였다. 특히 다중 쓰레드의 메모리 동시 접근을 통해 연속 메모리공간의 병합 접근 효과와 공유 메모리의 동시 접근을 지원하였다. 본 실험은 TSPLIB에서 제공되는 127개부터 1002개에 이르는 도시 데이터를 사용하였고, Intel Core i9-9900K CPU와 Nvidia Titan RTX 시스템을 사용하여 순차 알고리즘과 병렬 알고리즘의 성능을 비교하였다. GPU 병렬화에 의한 성능 향상은 약 10.13~11.37배의 성능 개선 효과를 보였다.
It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.33-40
/
2021
The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.
Baby boomers who have rebuilt the Korean economy over the last half a century are now transitioning into a silver generation who are over 65 years of age. New silver consumers are qualitatively and quantitatively different from the previous generation and are considered to be 'the single most consumption-leading generation.' The number of new silver consumers using department stores and traditional markets has increased. SPSS ver. 21.0 was used with the methods of frequency analysis, t-test, one-way analysis of variance (ANOVA), device master record test, and regression analysis. This research studies consumer satisfaction of new silver consumers on department stores and traditional markets among retailing. The improvement of the parking environment is the most urgent issue for traditional markets because the long-term assessments of parking areas indicate that it is necessary to provide improved convenience for consumers. Salesman satisfaction has improved and consumer satisfaction ranks salesman satisfaction high for traditional markets; however, price satisfaction is low and the distribution system should be improved to supply products at a lower price. Salesman and price satisfaction should be improved at depart stores. Traditional markets should also promote consumer satisfaction through consistent management to make consumers trust information in regards to quality control and production and distribution; in addition, department stores should increase consumer satisfaction by maintaining store systems such as product diversification and display, cleanness, and atmosphere.
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.12-22
/
2024
The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.
퀘스트(Quest) 시스템은 MMORPG에서 콘텐츠를 제공하는 핵심 시스템 중 하나이다. 퀘스트디자인 업무에서 퀘스트 보상 설정은 게임 내 작용하는 여러 구성 요소의 높은 조합 복잡도로 인해 적절한 보상 수준을 산출하기가 어려운 문제에 속한다. 본 논문에는 퀘스트 보상 문제를 순회 판매원 문제(Traveling Salesman Problem, TSP)로 모델링하여 해결함으로써 적절한 보상수치를 자동적으로 산출해 낼 수 있는 기법을 제안하였다. 이를 통해 퀘스트 디자인 단계에서 퀘스트 보상 수치 확정을 위한 강도 높은 테스트 부담을 줄이고 정확한 보상 수치를 산출하는데 도움이 될 것이다.
TSP(Traveling Salesman Problem)는 N개의 도시가 주어질 때 어떠한 임의의 도시에서 출발하여 모든 도시를 단 한번만 방문하여 다시 출발지로 되돌아오는 여려 경로들 중 가장 짧은 거 리를 구하는 문제이다. 방문 도시수가 증가함에 따라 계산량이 기하급수적으로 증가하게 되는 문제로 인해 NP-Hard문제로 분류되며 유전자 알고리즘이 대표적으로 이용된다. TSP문제에 있어서 보다 우수한 결과를 얻기 위해 현재까지 다양한 연산자들이 개발되고 연구되어 왔다. 본 논문에서는 새로운 집단 초기화 방법과 순차변환 방법을 제안하여 기존의 방법들과 비교를 통해 성능 향상을 입증하였다.
In this study, for the first time, we propose the ADI(Adaptive De-Interlacing) algorithm, which improves visually and subjectively, horizontal and vertical edges on the image processed by the ELA (Edge Based Line Average) method. The proposed ADI algorithm enlargesthe window size to 5*3 in order to utilize the feature of the continuity of edges, and the adaptive interpolator is employed to decide adaptiely horizontal, diagonal, and vertical edges. Based on the results of the compter simulation, it is confimed that the new ADI algorithm improve the PSNR by 0.5dB in the Lena image with 512*512 size and by 0.4dB in the sequence image of a salesman, respectively. For the horizontal and vertial edges on the still and salesman sequence images, the proposed ADI algorithm has better visulal improvement than the conventional ELA algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.