• 제목/요약/키워드:

검색결과 257건 처리시간 0.029초

시뮬레이션 모형을 통한 관광정보서비스 효과 분석 (Analysis of Tour Information Services using Agent-based Simulation)

  • 김현명;오준석
    • 대한교통학회지
    • /
    • 제24권6호
    • /
    • pp.103-117
    • /
    • 2006
  • 본 연구에서는 개별 관광객을 Simulation하는 모형을 개발하고. 이를 이용해 첨단 관광정보시스템 하에서의 여행객의 관광지 선택행태 변화와 관광 수요 패턴의 변화를 분석하였다. 관광객의 여행계획 목적함수는 기대효용 최대화로 가정하였고, 교통망에서 순차적 방문 계획 해를 얻기 위해 Traveling Salesman Problem(TSP)을 이용하였다. 단 관광객들의 경우 하루 동안 주어진 여행시간과 여행예산의 제약이 존재하기 때문에, 제약이 존재하는 TSP. 즉 Prize-Collecting TSP를 이용하였으며, 하루 이상 관광지에 체류하는 관광객들의 여행계획 문제를 풀기위해 Prize-Collecting Multiple-Day TTaveling Salesman Problem(PC MD TSP)을 개발하였다 관광 정보의 형태는 사전정보, Oft-line 정보. On-line 정보로 구분하여, 전체 관광객들을 이용 가능한 정보 형태에 따라 3가지 계층으로 구분하였으며. Simulation을 통해 각 관광지의 관광객을 계산하였다. 개발된 모형을 통해 Ubiquitous 환경에서의 On-line 정보가 관광객들뿐만 아니라 관광지에도 수요증가에 따른 운영 이익 증대를 가져다 줄 수 있음을 확인하였다.

GPU-based Parallel Ant Colony System for Traveling Salesman Problem

  • Rhee, Yunseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.1-8
    • /
    • 2022
  • 본 논문에서는 개미 집단 시스템(ant colony system)을 통한 순회 외판원 문제(traveling salesman problem)를 효과적으로 해결하기 위해 GPU 기반 병렬 알고리즘을 설계 구현하였다. TSP에서 동시에 수백 또는 수천의 탐색 여정(tour)을 생성하는 반복 과정을 GPU의 작업 병렬성을 활용하여 처리성능을 개선하고, 페로몬 자취 데이터의 업데이트 과정은 32x32의 쓰레드 블럭을 사용하여 데이터 병렬성을 적극 활용하였다. 특히 다중 쓰레드의 메모리 동시 접근을 통해 연속 메모리공간의 병합 접근 효과와 공유 메모리의 동시 접근을 지원하였다. 본 실험은 TSPLIB에서 제공되는 127개부터 1002개에 이르는 도시 데이터를 사용하였고, Intel Core i9-9900K CPU와 Nvidia Titan RTX 시스템을 사용하여 순차 알고리즘과 병렬 알고리즘의 성능을 비교하였다. GPU 병렬화에 의한 성능 향상은 약 10.13~11.37배의 성능 개선 효과를 보였다.

순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선 (Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem)

  • 장주영;김민제;이종환
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

뉴실버 소비자의 소매업태 속성평가 및 소비자만족도 연구: 백화점과 전통시장을 중심으로 (Retailing Attribute Evaluation and Satisfaction of New Silver Consumers: Focus on Department Stores and Traditional Markets)

  • 김수민;이승신
    • Human Ecology Research
    • /
    • 제53권6호
    • /
    • pp.619-628
    • /
    • 2015
  • Baby boomers who have rebuilt the Korean economy over the last half a century are now transitioning into a silver generation who are over 65 years of age. New silver consumers are qualitatively and quantitatively different from the previous generation and are considered to be 'the single most consumption-leading generation.' The number of new silver consumers using department stores and traditional markets has increased. SPSS ver. 21.0 was used with the methods of frequency analysis, t-test, one-way analysis of variance (ANOVA), device master record test, and regression analysis. This research studies consumer satisfaction of new silver consumers on department stores and traditional markets among retailing. The improvement of the parking environment is the most urgent issue for traditional markets because the long-term assessments of parking areas indicate that it is necessary to provide improved convenience for consumers. Salesman satisfaction has improved and consumer satisfaction ranks salesman satisfaction high for traditional markets; however, price satisfaction is low and the distribution system should be improved to supply products at a lower price. Salesman and price satisfaction should be improved at depart stores. Traditional markets should also promote consumer satisfaction through consistent management to make consumers trust information in regards to quality control and production and distribution; in addition, department stores should increase consumer satisfaction by maintaining store systems such as product diversification and display, cleanness, and atmosphere.

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

최적 동선을 고려한 MMORPG 퀘스트 보상 설계 기법 (A MMORPG Quest Reward Design Technique By Considering Optimal Quest Play Paths)

  • 강신진;신승호;조성현
    • 한국게임학회 논문지
    • /
    • 제9권4호
    • /
    • pp.57-66
    • /
    • 2009
  • 퀘스트(Quest) 시스템은 MMORPG에서 콘텐츠를 제공하는 핵심 시스템 중 하나이다. 퀘스트디자인 업무에서 퀘스트 보상 설정은 게임 내 작용하는 여러 구성 요소의 높은 조합 복잡도로 인해 적절한 보상 수준을 산출하기가 어려운 문제에 속한다. 본 논문에는 퀘스트 보상 문제를 순회 판매원 문제(Traveling Salesman Problem, TSP)로 모델링하여 해결함으로써 적절한 보상수치를 자동적으로 산출해 낼 수 있는 기법을 제안하였다. 이를 통해 퀘스트 디자인 단계에서 퀘스트 보상 수치 확정을 위한 강도 높은 테스트 부담을 줄이고 정확한 보상 수치를 산출하는데 도움이 될 것이다.

  • PDF

최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법 (New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem)

  • 강래구;임희경;정채영
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem)는 N개의 도시가 주어질 때 어떠한 임의의 도시에서 출발하여 모든 도시를 단 한번만 방문하여 다시 출발지로 되돌아오는 여려 경로들 중 가장 짧은 거 리를 구하는 문제이다. 방문 도시수가 증가함에 따라 계산량이 기하급수적으로 증가하게 되는 문제로 인해 NP-Hard문제로 분류되며 유전자 알고리즘이 대표적으로 이용된다. TSP문제에 있어서 보다 우수한 결과를 얻기 위해 현재까지 다양한 연산자들이 개발되고 연구되어 왔다. 본 논문에서는 새로운 집단 초기화 방법과 순차변환 방법을 제안하여 기존의 방법들과 비교를 통해 성능 향상을 입증하였다.

수평 및 수직 윤곽선을 개선한 적응 주사선 보간 알고리즘에 관한 연구 (A study of the adaptive de-interlacing up-conversions for enhancement horizontal and vertical edges)

  • 배준석;박노경;문대철
    • 전자공학회논문지S
    • /
    • 제35S권2호
    • /
    • pp.114-125
    • /
    • 1998
  • In this study, for the first time, we propose the ADI(Adaptive De-Interlacing) algorithm, which improves visually and subjectively, horizontal and vertical edges on the image processed by the ELA (Edge Based Line Average) method. The proposed ADI algorithm enlargesthe window size to 5*3 in order to utilize the feature of the continuity of edges, and the adaptive interpolator is employed to decide adaptiely horizontal, diagonal, and vertical edges. Based on the results of the compter simulation, it is confimed that the new ADI algorithm improve the PSNR by 0.5dB in the Lena image with 512*512 size and by 0.4dB in the sequence image of a salesman, respectively. For the horizontal and vertial edges on the still and salesman sequence images, the proposed ADI algorithm has better visulal improvement than the conventional ELA algorithm.

  • PDF