• Title/Summary/Keyword: /beta-galactosidase

Search Result 529, Processing Time 0.024 seconds

Phospho-$\beta$-galactosidase gene located on plasmid in lactobacillus casei (플라스미드에 존재하는 lactobacillus casei의 phospho-$\beta$-galactosidases 유전자)

  • 문경희;박정희;최순영;이유미;김태한;하영칠;민경희
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • Plasmid DNA was isolated from Lactobacillus casei SW-M1($Lac^{+}$strain). The curing frequencies of pPLac plasmid from L. casei SW-M1 showed 43% for acriflavin treatment and 53% for ethidium bromide treatment after 3 times transfer. On the charaterization of pPLac plasmid, it was found that the plasmid contained gene encoding phospho-$\beta$-galactosidase for lactose utilization. Lactose-PTS(phosphotransferase system)was involved in membrane transport system in $Lac^{+}$ strain. Induction of phospho-$\beta$-galactosidase was specially effective by galactose, lower effect with lactose and glucose but not by IPTG(isopropyl-$\beta$-D-thiogalactoside). This result showed that induction of phospho-$\beta$-galactosidase by IPTG did not appeared. The catabolite repression of phospho-$\beta$-galactosidase synthesis by glucose was not found in L. casei.

  • PDF

Improving Soluble Expression of β-Galactosidase in Escherichia coli by Fusion with Thioredoxin

  • Nam, E.S.;Jung, H.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1751-1757
    • /
    • 2004
  • Recombinant heterologous proteins can be produced as insoluble aggregates partially or perfectly inactive in Escherichia coli. One of the strateges to improve the solubility of recombinant proteins is fusion with a partner that is excellent in producing soluble fusion proteins. To improve the production of soluble $\beta$-galactosidase, the gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase (KNOUC112 $\beta$-gal) was fused with thioredoxin gene, and optimization of its expression in E. coli TOP10 was performed. KNOUC112 $\beta$-gal in pET-5b was isolated out, fused with thioredoxin gene in pThioHis C, and transformed to E. coli TOP10. The $\beta$-galactosidase fused with thioredoxin was produced in E. coli TOP10 as dimer and trimer. The productivity of fusion $\beta$ -galactosidase expressed via pThioHis C at 37$^{\circ}C$ was about 5 times higher than that of unfused $\beta$-galactosidase expressed via pET-5b at 37$^{\circ}C$. Inclusion body of $\beta$-galactosidase was formed highly, regardless of the induction by IPTG when KNOUC112 $\beta$ -gal was expressed via pET-5b at 37$^{\circ}C$. Fusion $\beta$ -galactosidase expressed at 37$^{\circ}C$ via pThioHis C without the induction by IPTG was soluble, but the induction by IPTG promoted the formation of inclusion body. Lowering the incubation temperature for the expression of fusion gene under 25$^{\circ}C$ prevented the formation of inclusion body, optimally at 25$^{\circ}C$. 0.07 mM of IPTG was sufficient for the soluble expression of fusion gene at 25$^{\circ}C$. The soluble production of Thermus thermophilus KNOUC112 $\beta$-galactosidase could be increased about 10 times by fusion with thioredoxin, and optimization of incubation temperature and IPTG concentration for induction.

Properties of ${\beta}$-Galactosidase from Bacillus licheniformis Isolated from Cheongkookjang (청국장 유래 Bacillus licheniformis의 ${\beta}$-Galactosidase 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • A bacterial strain was isolated from homemade Cheongkookjang as a producer of the ${\beta}$-galactosidase, capable of hydrolyzing lactose to liberate galactose and glucose residues. The isolate YB-1105 has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. ${\beta}$-Galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-1105. The enzymes of both fractions demonstrated maximum activity for hydrolysis of para-nitrophenyl-${\beta}$-D-galactopyranoside (pNP-${\beta}Gal$) under identical reaction conditions of pH 6.5 and $50^{\circ}C$. However, ${\beta}$-galactosidase activity from the culture filtrate was affected more than that from the cell free extract at acidic pHs and high temperatures. The hydrolyzing activity of both ${\beta}$-galactosidases for pNP-${\beta}Gal$ was dramatically decreased by the addition of low concentrations of galactose, but was only marginally decreased by high concentrations of glucose or mannose.

Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli

  • Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.434-442
    • /
    • 2008
  • We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.

Mapping of Gene Encoding Phospho-$\beta$-galactosidase from Lactobacillus casei and its Expression in Escherichea coli (Lactobacillus casei 의 Phospho-$\beta$-galactosidase 유전자의 지도작성과 Escherichia coli 내에서의 발현)

  • 박정희;문경희;민경희
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.539-545
    • /
    • 1992
  • Recombinant plasmid pPLac15 determined both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and phospho-$\beta$-galactosidase (Moon et al., 1989). A restriction mapping of the pPLac15 was compiled with several restriction enzymes and a seriese of sub clones into pUC18 was constructed. From an analysis of the proteins produced by Escherichia coli cells of transformants containing each of the recombinant subclone plasmids, it was found that the gene for phospho-$\beta$-galactosidase in pUCI8 was expressed about 1.8-folds in E. coli.

  • PDF

Studies On Induction of ${\beta}$-D-galactosidase In Candida kefyr (Candida kefyr의 ${\beta}$-D-galactosidase 合成誘導에 關한 硏究[I])

  • Chun, Soon-Bai
    • Korean Journal of Microbiology
    • /
    • v.22 no.2
    • /
    • pp.77-84
    • /
    • 1984
  • This examined some conditions for the induction of ${\beta}$-D-galactosidase synthesis in Candida kefyr CBS 834. The optimal pH, temperature, and inoculum size either for growth or${\beta}$-D-galactosidase synthesis were 5.5, $30^{\circ}C$ and above 0.2 at A610nm, respectively. Enzyme activity began to increase at 2h after the addition of inducer, and continued to increase linearly up to $2{\sim}3h$ before reaching stationary phase, and thereafter its activity was decreased. ${\beta}$-D-galactosidase was induced either by lactose or galactose but not either by glucose or ethanol. The greater activity of ${\beta}$-D-galactosidase on galactose than on lactose indicated that the former might be natural inducer for ${\beta}$-D-galactosidase synthesis. The rate of its induction as a function of lactose concentration showed that enzyme activity increased linearly above 4mM, while it was very low below that. Glucose represed the induction of ${\beta}$-D-galactosidase, and the period of adaptation to inducer from other carbon sources was relatively short.

  • PDF

Enhancement of Sensitivity in Interferometric Biosensing by Using a New Biolinker and Prebinding Antibody

  • Park, Jae-Sook;Lim, Sung-Hyun;Sim, Sang-Jun;Chae, Hee-Yeop;Yoon, Hyun-C.;Yang, Sang-Sik;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1968-1976
    • /
    • 2006
  • Recombinant E. coli ACV 1003 (recA:: lacZ) was used to measure low concentrations of DNA-damaging chemicals, which produce $\beta$-galactosidase via an SOS regulon system. Very low $\beta$-galactosidase activities of less than 0.01 unit/ml, $\beta$-galactosidase produced through an SOS response corresponding to the 10 ng/ml (ppb) of DNA damaging chemicals in the environment, can be rapidly determined by using an alternative interferometric biosensor with optically flat thin films of porous silicon rather than by the conventional time-consuming Miller's enzyme assay as well as the ELISA method. fu order to enhance the sensitivity in the interferometry, it needs to obtain more uniform distribution and higher biolinking efficiency, whereas interferometric sensing is rapid, cheap, and advantageous in high throughput by using a multiple-well-type chip. In this study, pore size adjusted to 60 nm for the target enzyme $\beta$-galactosidase to be bound on both walls of a Si pore and a calyx crown derivative was apllied as a more efficient biolinker. Furthermore, anti-$\beta$-galactosidase was previously functionalized with the biolinker for the target $\beta$-galactosidase to be specifically bound. When anti-$\beta$-galactosidase was bound to the calyx-crown derivative-linked surface, the effective optical thickness was found to be three times as high as that obtained without using anti-$\beta$-galactosidase. The resolution obtained was very similar to that afforded by the time-consuming ELISA method; however, the reproducibility was still unsatisfactory, below 1 unit $\beta$-galactosidase/ml, owing to the microscopic non-uniform distribution of the pores in the etched silicon surface.

Purification of Intracellular $\beta$-Galactosidase from Lactobacillus sporogenes in an Aqueous Poly(ethylene glycol)- Potassium Phosphate Two-Phase System (Poly(ethylene glycol)/인산염 용액 2상계를 이용한 Lactobacillus sporogenes가 생산하는 균체내 $\beta$-Galactosidase의 추출 분리에 관한 연구)

  • 이삼빈;김영만;이철호
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.84-88
    • /
    • 1987
  • Poly(ethylene glycol)-PPB two phase system was used tot the purification of $\beta$-galactosidase from Lactobacillus sporogenes. The smaller the molecular weight of concentration of PEG phase in-creased, proteins as well as $\beta$-galactosidase was partitioned into the top phase. All cell debris were confined to the potassium phosphate phase (bottom phase), approached to the binodial line. The purification ratio increased by changing the polymer-salt composition of the tie line towards higher salt concentrations. It was also possible to obtain higher purification of the enzyme after two-step extraction using PEG 1000 and PEG 300. The top phase contained 74% of the total $\beta$-galactosidase with a purification factor of 2.1.

  • PDF

The Enzymatic Pattern of Bifdobacterium sp. Int-57 Isolated from Korean Feces (한국인 분변으로부터 분리한 Bifidobacterium sp. Int-57의 효소 Pattern)

  • 박헌국;강동현;이계호;윤석환;이세경;지근억
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.647-654
    • /
    • 1992
  • In order to study the physiological properties of the intestinal bacteria, we isolated the intestinal bacteria of Koreans and tested the enzymatic patterns. Isolated Bifidobacterium sp. Int-57 had the higher activity of $\alpha$-glucosidase, $\beta$-glucosidase, $\alpha$-galactosidase, $\beta$-galactosidase. $\beta$-xylosidase and $\alpha$-arabinofuranosidase than other intestinal microorganisms. The effect of the carbon sources on the production of each enzymes of Bijidobacterium sp. Int-57 was investigated. The most suitable carbon source for the production of $\beta$-glucosidase was maltose, for a-glucosidase cellobiose, for $\alpha$-galactosidase raffinose, for $\beta$-galactosidase lactose, and for $\beta$-xylosidase and $\alpha$-arabinofuranosidase xylose, respectively. In addition, we investigated the optimal conditions and pH stability of each crude enzymes. The optimal condition of a-glucosidase was pH 6.0 and $40^{\circ}C$. that of Jj-glucosidase pH 7.0 and 50oe, that of $\beta$-galactosidase pH 7.0 and $50^{\circ}C$, that of $\beta$-xylosidase pH 6.0 and $40^{\circ}C$ , and that of $\alpha$-arabinofuranosidase pH 5.0 and $50^{\circ}C$. respectively. a-Glucosidase was stable at pH 4.0-9.0. Jj-glucosidase at pH 4.0-7.0. $\beta$-galactosidase at pH 4.0-9.0, $\beta$-xylosidase at pH 4.0-6.0, and /3-arabinofuranosidase at pH 7.0-9.0, respectively.

  • PDF

Characterization of the Extracellular ${\beta}-Galactosidase$ Produced from Streptomyces sp. YB-9 (Streptomyces sp. YB-9가 생산하는 균체외 ${\beta}-galactosidase$의 특성)

  • Lee, Kyung-Seop;Kim, Chang-Jin;Yoon, Ki-Hong
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.299-304
    • /
    • 2003
  • A strain YB-9 was isolated from soil as a producer of the extracellular ${\beta}-D-galactosidase$, which catalyzes the hydrolysis of lactose. The strain YB-9 was identified as Streptomyces sp. on the basis of its cultural, morphological and physiological properties. After treating culture supematant of the isolate with ammonium sulfate $(15{\sim}70%)$, the precipitated protein was used as a crude ${\beta}-galactosidase$ for analyzing its reaction properties with $para-nitrophenyl-{\beta}-D-galactoside$ $(pNP-{\beta}Gal)$ and lactose as substrates. The {\beta}-galactosidase showed its maximal activity at pH $6.0{\sim}6.5$ and $60^{\circ}C$. The hydrolyzing activity of ${\beta}-galactosidase$ for both $pNP-{\beta}Gal$ and lactose was decreased by galactose. Its hydrolyzing activity for lactose was slightly decreased by glucose, but the activity for $pNP-{\beta}Gal$ was increased to 1.3-folds by glucose. Especially, its hydrolyzing activity was not affected for lactose and was increased to 1.6-folds for $pNP-{\beta}Gal$ by xylose.