• 제목/요약/키워드: *-algebra

Search Result 1,776, Processing Time 0.024 seconds

Authentication and Key Agreement Protocol based on NTRU in the Mobile Communication (NTRU기반의 이동 통신에서의 인증 및 키 합의 프로토콜)

  • 박현미;강상승;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2002
  • As the electronic commerce increases rapidly in the mobile communication, security issues become more important. A suitable authentication and key agreement for the mobile communication environment is a essential condition. Some protocols based on the public key cryptosystem such as Diffie-Hellman, EIGamal etc. were adapted in the mobile communication. But these protocols that are based on the difficult mathematical problem in the algebra, are so slow and have long key-length. Therefore, these have many limitation to apply to the mobile communication. In this paper, we propose an authentication and key agreement protocol based on NTRU to overcome the restriction of the mobile communication environment such as limited sources. low computational fewer, and narrow bandwidth. The proposed protocol is faster than other protocols based on ECC, because of addition and shift operation with small numbers in the truncated polynomial ring. And it is as secure as other existent mathematical problem because it is based on finding the Shortest or Closest Vector Problem(SVP/CVP).

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

Fifth Graders' Understanding of Variables from a Generalized Arithmetic and a Functional Perspectives (초등학교 5학년 학생들의 일반화된 산술 관점과 함수적 관점에서의 변수에 대한 이해)

  • Pang, JeongSuk;Kim, Leena;Gwak, EunAe
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.419-442
    • /
    • 2023
  • This study investigated fifth graders' understanding of variables from a generalized arithmetic and a functional perspectives of early algebra. Specifically, regarding a generalized perspective, we included the property of 1, the commutative property of addition, the associative property of multiplication, and a problem context with indeterminate quantities. Regarding the functional perspective, we covered additive, multiplicative, squaring, and linear relationships. A total of 246 students from 11 schools participated in this study. The results showed that most students could find specific values for variables and understood that equations involving variables could be rewritten using different symbols. However, they struggled to generalize problem situations involving indeterminate quantities to equations with variables. They also tended to think that variables used in representing the property of 1 and the commutative property of addition could only be natural numbers, and about 25% of the students thought that variables were fixed to a single number. Based on these findings, this paper suggests implications for elementary school students' understanding and teaching of variables.

An Analysis on the Understanding of High School Students about the Concept of a Differential Coefficient Based on Integrated Understanding (통합적 이해의 관점에서 본 고등학교 학생들의 미분계수 개념 이해 분석)

  • Lee, Hyun Ju;Ryu, Jung Hyeon;Cho, Wan Young
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.131-155
    • /
    • 2015
  • The purpose of this study is to investigate if top-ranked high school students do integrated understanding about the concept of a differential coefficient. For here, the meaning of integrated understanding about the concept of a differential coefficient is whether students understand tangent and velocity problems, which are occurrence contexts of a differential coefficient, by connecting with the concept of a differential coefficient and organically understand the concept, algebraic and geometrical expression of a differential coefficient and applied situations about a differential coefficient. For this, 38 top-ranked high school students, who are attending S high school, located in Cheongju, were selected as subjects of this analysis. The test was developed with high-school math II textbooks and various other books and revised and supplemented by practising teachers and experts. It is composed of 11 questions. Question 1 and 2-(1) are about the connection between the concept of a differential coefficient and algebraic and geometrical expression, question 2-(2) and 4 are about the connection between occurrence context of the concept and the concept itself, question 3 and 10 are about the connection between the expression with algebra and geometry. Question 5 to 9 are about applied situations. Question 6 is about the connection between the concept and application of a differential coefficient, question 8 is about the connection between application of a differential coefficient and expression with algebra, question 5 and 7 are about the connection between application of a differential coefficient, used besides math, and expression with geometry and question 9 is about the connection between application of a differential coefficient, used within math, and expression with geometry. The research shows the high rate of students, who organizationally understand the concept of a differential coefficient and algebraic and geometrical expression. However, for other connections, the rates of students are nearly half of it or lower than half.

On the Role of Intuitive Model for Teaching Operations of Integers in the Middle School Mathematics Class (중학교 수학 수업에서 정수의 사칙계산 지도를 위한 직관적 모델의 역할에 관한 연구)

  • Kim, Ik-Pyo
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.97-115
    • /
    • 2008
  • In high school mathematics class, to subtract a number b from a, we add the additive inverse of b to a and to divide a number a by a non-zero number b, we multiply a by the multiplicative inverse of b, which is the formal approach for operations of real numbers. This article aims to give a connection between the intuitive models in middle school mathematics class and the formal approach in high school for teaching operations of negative integers. First, we highlight the teaching methods(Hwang et al, 2008), by which subtraction of integers is denoted by addition of integers. From this methods and activities applying the counting model, we give new teaching methods for the rule that the product of negative integers is positive. The teaching methods with horizontal mathematization(Treffers, 1986; Freudenthal, 1991) of operations of integers, which is based on consistently applying the intuitive model(number line model, counting model), will remove the gap, which is exist in both teachers and students of middle and high school mathematics class. The above discussion is based on students' cognition that the number system in middle and high school and abstracted number system in abstract algebra course is formed by a conceptual structure.

  • PDF

Application of Spatial Analysis Modeling to Evaluating Functional Suitability of Forest Lands against Land Slide Hazards (공간분석(空間分析)모델링에 의한 산지(山地)의 토사붕괴방재기능(土砂崩壞防災機能) 적합도(適合度) 평가(評價))

  • Chung, Joosang;Kim, Hyungho;Cha, Jaemin
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.535-542
    • /
    • 2001
  • The objective of this study is to develop a spatial analysis modeling technique to evaluate the functional suitability of forest lands for land slide prevention. The functional suitability is classified into 3 categories of high, medium and low according to the potential of land slide on forest lands. The potential of land slide hazards is estimated using the measurements of 7 major site factors : slope, bed rock, soil depth, shape of slope, forest type and D.B.H. class of trees. The analytic hierarchical process is applied to determining the relative weight of site factors in estimating the potential of land slides. The spatial analysis modeling starts building base layers for the 7 major site factors by $25m{\times}25m$ grid analysis or TIN analysis, reclassifies them and produces new layers containing standardized attribute values, needed in estimating land slide potential. To these attributes, applied is the weight for the corresponding site factor to build the suitability classification map by map algebra analysis. Then, finally, cell-grouping operations convert the suitability classification map to the land unit function map. The whole procedures of the spatial analysis modeling are presented in this paper.

  • PDF

An Analysis of Students' Understanding of Mathematical Concepts and Proving - Focused on the concept of subspace in linear algebra - (대학생들의 증명 구성 방식과 개념 이해에 대한 분석 - 부분 공간에 대한 증명 과정을 중심으로 -)

  • Cho, Jiyoung;Kwon, Oh Nam
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.469-493
    • /
    • 2012
  • The purpose of this study is find the relation between students' concept and types of proof construction. For this, four undergraduate students majored in mathematics education were evaluated to examine how they understand mathematical concepts and apply their concepts to their proving. Investigating students' proof with their concepts would be important to find implications for how students have to understand formal concepts to success in proving. The participants' proof productions were classified into syntactic proof productions and semantic proof productions. By comparing syntactic provers and semantic provers, we could reveal that the approaches to find idea for proof were different for two groups. The syntactic provers utilized procedural knowledges which had been accumulated from their proving experiences. On the other hand, the semantic provers made use of their concept images to understand why the given statements were true and to get a key idea for proof during this process. The distinctions of approaches to proving between two groups were related to students' concepts. Both two types of provers had accurate formal concepts. But the syntactic provers also knew how they applied formal concepts in proving. On the other hand, the semantic provers had concept images which contained the details and meaning of formal concept well. So they were able to use their concept images to get an idea of proving and to express their idea in formal mathematical language. This study leads us to two suggestions for helping students prove. First, undergraduate students should develop their concept images which contain meanings and details of formal concepts in order to produce a meaningful proof. Second, formal concepts with procedural knowledge could be essential to develop informal reasoning into mathematical proof.

  • PDF

A Comparative Study of Curriculum and Mathematics Learning Programme of Lower Grade Between Korea and New Zealand (한국과 뉴질랜드의 초등학교 저학년 교육과정 및 수학학습 프로그램의 비교와 분석)

  • 최창우
    • School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • Recently, we have been listening such a words, that is, the crisis of public education through the mass communication such as newspaper or broadcasting. This means that we didn't have an enough opportunity to think it over about good education programme which the education of school can be normalized or the design of curriculum in the current problems such as overcrowded class, teacher and poor finance which is not still solved. As we know, it is true that the older generation is familiar with the rote learning which was under the control of behaviorism for about three hundred years. Fortunately, The 7th curriculum which had made public by the ministry of education on 30 Dec. 1997 have changed so many things such as real life based or activity based and so on. But it still leaves something to be desired in reflecting the demand of teachers of field. Taking into account this real situation, I have wondered how they run curriculum and how math learning programme of lower grade is different with ours in New Zealand, etc and so I had tried to find some suggestive points through the comparison of curriculum and text between Korea and New Zealand. But, if we want to compare all the strands of curriculum between two countries, it is too global and so in this paper, we deal with only number and operations(number), measurement, figure(geometry), equation and patter(algebra), probability and statistics(statistics) which are dealt with more comparatively in the lower grade of primary school. Because the main purpose of this paper is a comparison and analysis of the curriculum and math learning program of the lower grade in the primary school between two countries and so we compare global characteristics of education system and curriculum between two countries, at first and then we dealt with the very core part of the content of New Zealand curriculum within the ranges of level 1, 2 and 3 and global characteristics of learning program simultaneously.

  • PDF