• Title/Summary/Keyword: (w/o/w) Emulsion

Search Result 299, Processing Time 0.025 seconds

Stability of O/W Emulsions Prepared from Winsor Systems-1 (Winsor계에서 제조된 O/W 에멀젼의 안정성 연구-1)

  • Cho, Wan-Goo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.261-267
    • /
    • 1998
  • We have investigated the stability of macroemulsions of AOT prepared from Winsor systems. The emulsion system was prepared from heptane+aqueous NaCl+AOT. As the concentration of NaCl increases, the stability of the emulsion increases, reaches a maximum, and then decreases. At low salt concentration the creaming occurred due to density difference of oil and aqueous phases. We developed a model for the creaming. Behavior of the emulsions containing low salt could be described very well by the model, however, at high salt concentration the electrostatic repulsion decreased due to screening and droplets started to attract each other and the stability of the emulsion decreased.

  • PDF

A Study on the Preparation and Application of Chitosan Microcapsule and Bead. (키토산 마이크로캅셀 및 비드의 제조와 응용에 관한 연구)

  • 하병조;이옥섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.20 no.1
    • /
    • pp.37-51
    • /
    • 1994
  • Empty cross-linked chitosan microcapsule was prepared by chemical cross-linking reaction using glutaraldehyde(GA). Chitosan bead was also prepared by coacervation method using sodium hydroxide. The technique involves the formation of a chitosan solution in the discontinuous phase of W/O emulsion. The factors influencing the emulsion stability have been examined to establish optimum conditions Chitosan microcapsules were useful for encapsulation of biological materials, and chitosan bead was useful to prepare the biologically active peptide-bound polysaccharide. As a model compound Gly-His-Lys, cell growth factor, was successfully coupled to chitosan bead.

  • PDF

Nano-emulsion Formed with Phospholipid-Nonionic Surfactant Mixtures and its Stability (인지질-비이온계면활성제 혼합물로 형성된 나노에멀젼과 이의 안정성)

  • Cho, Wan Goo;Kim, Eun Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.221-226
    • /
    • 2014
  • IIn this study, O/W type nano-emulsions were prepared by phospholipid-nonionic surfactant mixtures and octyldodecylmyristate using the phase transition low-energy emulsification method. The nano-emulsions were formed only in the very narrow area of the concentration of mixed surfactant and oil molar ratio of around 1 : 1. The particle size of the emulsions was decreased as adding the aqueous phase into the emulsions after phase inversion point unlike the emulsions formed only with nonionic surfactant. Nano-emulsion was stable at room temperature for more than a month. Thus, the nano-emulsions containing phospholipids can be widely used as a cosmetic formulations.

Separation of a Sugar Mixture by Emulsion Liquid Membranes (에멀젼형 액막법에 의한 당 혼합물의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Separation of fructose and glucose was performed using emulsion liquid membranes with a mixture of an organoboronic acid and a quaternary ammonium salt as a carrier in a batch reactor. In order to find a carrier and an optimal experimental condition suitable to the sugar separation, extraction of each sugar was carried out independently. The effect of various experimental variables, such as initial concentration of sugar in the feed phase, type of organoboronic acids, and w/o ratio, on the sugar separation was investigated, and the concentrations of sugars in each aqueous phase were analyzed. The ratio of degree of extraction of fructose to that of glucose was very high, but the concentration of fructose in the receiving phase was not too high. Therefore, a stronger stripping agent in the receiving phase was required for development of a practical ELM system suitable to the sugar separation.

The Emulsification of Silane as Water REpellent for Concrete (콘크리트 발수제용 Silane의 유화)

  • 황인동;염희남;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.760-767
    • /
    • 2000
  • Recently, the protection of construction is demanded with environmental pollution. These protect modes are use of concrete admixture, coat of protective polymer and impregnate of surface with chemicals etc. The most widely used impregnation is economical and effective. The define of Impregnation for construction protect is reacted in and consolidated substrate after absorbed. The impregnation agents are Polyesters, Acrylic monomers, Epoxy and Silicone derivatives. Commonly, because the Silane has good water repellency and environmental advantages that it widely used to water proofing agents, dampproofing agents and absorption reducer for concrete of bridges. When application of Silane, it occurs pollution and harmfulness as included organic solvent. The manufactures have tired to emulsification of Silane for the reducing of the defects. The Silane emulsion is vary unstable and does not stored long periods, and it is diminished in good properties with internal reaction. In this study we tried to emulsification of Silane for effectiveness improvement and reduce pollution and hazard and discussed properties variation of emulsion. The Silane emulsions are achieved emulsifying with W/O and O/W type surfactants. It used 0.24% PVA as protective colloid and stable phase is creamy. The creamy Silane emulsion performance as the penetration depth and water absorption rate are above 4 mm and below 0.1. It stable about 6 month at room temperature.

  • PDF

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

Emission Evaluation of Emulsion Fuel Prepared from Bunker C Oil (벙커 C유를 사용한 에멀젼 연료유의 배기가스 특성)

  • Lim, HeungKyoon;Lee, MyungJin;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • In this study, water in oil (W/O) emulsion fuel was prepared with surfactant mixture of OIMS90 and NP12 by varying ratio of water to bunker-C oil, surfactant concentration and composition, emulsification time, stirring intensity, temperature and mixing time. Diesel engine performance and exhaust emissions were measured and analyzed with prepared emulsified fuel and compared with those measured using bunker Coil. The results indicated that bunker C emulsion fuel stabilized by surfactant mixture of OIMS90 and NP12 is efficient in reducing emissions of particulate matter, $NO_2$, CO, $CO_2$ and $SO_2$. The biggest reduction in exhaust emission was achieved by using emulsion fuel prepared by OIMS90/NP12 = 4 : 6, 500 ppm of total surfactant concentration and 10% water content at $80^{\circ}C$. Boiler efficiency test measured with emulsion fuel showed excellent energy efficiency compared with bunker C oil.

Studies on the Physico-Chemical Properties on Several Chitosan Beads (몇 가지 키토산 비드들의 물리화학적 특성에 관한 연구)

  • Ha, Byung-Jo;Lee, Ok-Sub;Lee, Yoon-Sik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.186-193
    • /
    • 1996
  • Several chitosan beads were prepared by W/O emulsion and capillary extrusion methods. The surface structures were observed through SEM pictures, the surface areas were determined by BET method, the available amine contents were measured by picric acid titration method, and the results were correlated each other. The beads from W/O emulsion method were smaller in size but had higher hardness, surface area, and available amine contents than the ones from capillary extrusion method. Moreover, the surface area, available amine contents, apparent density and the hardness showed large differences according to the drying processes. As compared between the solvent dehydration and the freeze drying technique in W/O emulsion method, the former showed higher surface area, higher available amine contents and hardness than the latter. SEM pictures revealed that in case of solvent dehydration method, very small pores existed, whereas in case of freeze drying method, cell-like pores existed on the surface. The results of picric acid titration showed that the beads dried by solvent dehydration method were 10 times higher in amine contents than those from freeze drying method, and the amount of amine contents were increased as the surface area was increased. After fluorescamine was reacted with chitosan beads, the fluorescence labeled beads were observed through fluorescence microscope. The results showed that most of primary amine existed on the surface of beads and pores.

  • PDF

Preparation and Properties of D Phase Emulsion by Silicone Oil (계면활성제 유화법에 의한 D상 유화물 제조와 특성)

  • Kim, Hyung-Jin;Jeong, Noh-Hee;Kim, Hong-Soo;Lee, Seung-Yeul;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.809-813
    • /
    • 1999
  • D phase emulsification has been developed and elucidated the emulsification mechanism by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, follows by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetra siloxane(OMCS) in the surfactant solution. Polyols were essential components for this experiments. To understand the function of polyols, the solution behaviors of nonionic surfactant/oil/water/polyol systems were investigated by the ternany phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The solubility of oil in the isotropic surfactant phase was increased with the addition of PG. D phase emulsion was formed in the range of 70~90% of OMCS and 2.0~3.0 dyne/cm of interfacial tension and the structure was homogenious spherical and O/W type and its diameter was about $10{\mu}m$.

  • PDF

Stabilization and Release Behavior of W1/O/W2-Type Multiple Emulsions Using Various Block Copolymer Emulsifier and Stabilizer (다양한 Block Copolymer를 유화제 및 안정화제로 사용한 W1/O/W2-Type 다중에멀젼의 방출거동 및 안정성)

  • Haw, Jung-Rim;Kim, Cheol-Hun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-567
    • /
    • 1997
  • A new approach to obtain stable $W_1/O/W_2$ multiple emulsions has been studied ; The basis of the interfacial interaction between a PCL-PEO-PCL triblock copolymer and a lipophilic emulsifier in the dispersed oil phase was examined. $W_1/O/W_2$ multiple emulsions were prepared by the two-step method. Arlacel P-l35 was used as a liphophilic emulsifier and Synperonic PE/F 127 as a hydrophilic one. Eutanol-G was used as an oil phase. NaCl was encapsulated within the multiple emulsion droplets as the internal marker and its release rate studies were carried out. The suability of the multiple emulsions have been assessed by measuring Separation Ratios(%) and microscopic observations. The release of NaCl was significantly reduced in $W_1/O/W_2$ multiple emulsions containing PCL-PEO-PCL triblock copolymer(2k-4k-2k or 6k-4k-6k) in the oil phase. It may be concluded that the copolymer and the emulsifier form effective interfacial complex to enhance stability and to control the release rate. The effective diffusion coefficients of the NaCl were estimated as $2.64{\times}10^{-15}s$and $3.23{\times}10^{-16}gcm^2/s$ for the $W_1/O/W_2$ multiple emulsion containing 1.2 wt % of PCL-PEO-PCL triblock copolymers with compositions of 2k-4k-2k and 6k-4k-2k, respectively. The rate of release decreased with the increase of the initial concentration of NaCl. The results were examined in view of Higuchi mechanism. A kinetic model which is similar to the model for release of dispersed drugs from a polymeric matrix was found to be suitable for the release of NaCl from $W_1/O/W_2$ multiple emulsions.

  • PDF