• Title/Summary/Keyword: (w/o/w) Emulsion

Search Result 299, Processing Time 0.027 seconds

Effect of PVP on the Physical Stability of O/W Emulsion (O/W 유제의 물리적 안정성에 대한 PVP의 영향)

  • Oh, In-Joon;Lee, Mi-Young;Lee, Jeong-Min;Lee, Yong-Bok;Shin, Sang-Chul;Choi, Bo-Guil;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.287-293
    • /
    • 1997
  • To make a stable o/w emulsion, the effects of egg lecithin as an emulsifier and polyvinylpyrrolidone (PVP) as an auxiliary emulsifier on the physical stability of emulsion were investigated. The oil-in-water emulsion system was manufactured by microfluidizer and evaluated the physical stability. Average particle size and size distribution of emulsion was measured by dynamic light scattering analyzer and interfacial tension was measured. From the interfacial tension tested, critical micelle concentration of the egg lecithin was 0.1 %w/v and optimal concentration for the preparation of emulsion was 1.0 %w/v. The mean particle size was about $0.2\;{\mu}m$ which was suitable for injections. The short-term accelerated stability studies were conducted by centrifugation, freeze-thaw method and shaking of the emulsion samples. The addition of PVP was caused the reduction in the particle size and improved the physical stability of emulsion. These results suggested that a mixed interfacial film comprising the egg lecithin and PVP was formed at the o/w interface and it was effective in preventing phase separation under thermic or mechanical stress. We used antineoplaston A10 (A10) as a model drug which is peptide and amino acid derivative having a action to the living organism against the development of neoplastic growth by a nonimmunological progress. It has a poor solubility in water and there may be a difficulty in formulation of A10. Emulsion formulation study about A10 was performed. Solubility of A10 in emulsion was about five times as high as that in water. From the results of solubility and partition coefficient, almost A10 molecules in o/w emulsion exist in the interface between oil and water.

  • PDF

A Study on the Formation of a W/O/W Multiple Emulsion by Polyglyceryl-10 Stearate (Polyglyceryl-10 Stearate를 이용한 W/O/W 다중 에멀젼의 제조에 관한 연구)

  • Yoo, Jung Min;Choi, Se Bum;Kim, Kyung Min;Kim, Seong Ho;Lee, Chung Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.237-246
    • /
    • 2014
  • Multiple emulsions, called multiphase emulsions, include water-in-oil-in-water (W/O/W) type and oil-in-water-in-oil (O/W/O) type emulsions. In cosmetic industry, they are used to stabilize active ingredients but the applicability of the multiple emulsions is limited because of low stability and difficulty of manufacturing. In this study, we investigated a two-step emulsification process for a W/O/W type emulsion. We also investigated the change of stability using different emulsifiers and oil polarity. The results suggested that polyglyceryl-10 stearate, as a main emulsifier, played an important role in the stability and the formation of the multiple emulsions.

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.

Effect of Surfactant Micelle on Lipid Oxidation in Corn Oil-in-Water Emulsion with Phenol Compounds (Phenol성 물질이 첨가된 Corn Oil-in-Water Emulsion의 산화에 미치는 Surfactant Micelle의 영향)

  • Kim, Byung-Gyu;Chun, Sung-Sook;Cho, Young-Je
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • The purpose of this research was to determine the effect of phenol compounds from green tea leaves and surfactant micelles on lipid oxidation in com oil-in-water emulsion (O/W). The concentration of phenol and surfactant in continuous phase of the O/W with exceed Brij 700 and phenol compounds was measured. The particle size of O/W with phenol (100 ppm) increased with increasing added exceed surfactant $(0{\sim}2.0%)$ and the concentration of surfactant and phenols in the continuous phase higher than these of control. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in the O/W emulsions containing phenol compounds (100 ppm) and exceed surfactant $(0{\sim}2.0%)$ decreased with increasing concentration of exceed surfactant. The ability of the phenol compounds and exceed surfactant to inhibit hydroperoxide and headspace hexanal producing as lipid oxidation in O/W was BHT>procyanidin B3-3-O-gallate> (+)-gallocatechin > (+)-catechin and 2% > 1 % > 0% of exceed surfactant. These results indicate that phenol compounds and exceed surfactant could alter the physical location of hydroperoxide in O/W.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

Optimization of the Conditions for the O/W Emulsion Containing ${\omega}3$ Polyunsaturated Fatty Acid (${\omega}3$계 고도불포화지방산을 함유한 고안정성 수중유적형 유화계의 확립)

  • Chang, Pahn-Shick;Cho, Gye-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1114-1119
    • /
    • 1998
  • The stabilities of O/W emulsions (lipophilic core material:lipophobic wall material=3:2, w/w) containing various kinds of emulsifiers were compared to determine the optimal conditions of the HLB (hydrophilic lipophilic balance) value, the concentration and composition of emulsifier, the ratio of core material to the wall material, and the concentration and composition of polymers in the wall material. The effect of different chemical types of emulsifiers and the influence of single vs. binary emulsifier systems were compared with 13 kinds of emulsifier HLB values of $0.6{\sim}16.7$ at the concentration of 0.50%(w/w). The emulsion system was stable (more than 99.0 of ESI value) when the HLB value of the emulsifier was more than 11.0 or less than 2.8 of emulsifier HLB value. But it was unstable (less than 40.0 of ESI value) at the HLB value of the emulsifier between 3.4 and 8.6. Especially, we could find out the emulsion containing the emulsifier of polyglycerol polyricinoleate (PGPR, HLB 0.6) became stable creamy state. And, the ESI value of binary emulsifier system containing 0.25%(w/w) of PGPR and 0.25%(w/w) of polyoxyethylene sorbitan monolaurate (PSML, HLB 16.7) was higher than that of any single emulsifier system at the concentration of 0.50%(w/w). The highest emulsion stability was obtained in the liquefied wall material composed of 0.25%(w/v) of waxy corn starch and 0.50%(w/v) of agar.

  • PDF

Morphology and swelling property of chitosan microapsules and microbeads prepared by W/O emulsion (W/O 에멀젼에 의한 chitosan microcapsule 및 microbead의 morphology와 팽윤성)

  • 하병조;이옥섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 1995
  • Chitosan microcapsules and microbeads were prepared by W/O emulsion method, and their morphologies were observed through SEM. The microcapsules have skin layer of 8 Um and 250 Um of mean diameter, The swelling test showed higher s welling ability in protic solvents than in aphotic solvents. After containing moth-yl violet in the microcapsules, the release patterns were investigated. The results sho wed that the addition of Iysozyme in pH 5.1 acetate buffer accelerated the re-lease rate. In case of the microbeads, the mean diameter was about 70 Um. The surface of the microbeads showed porous structures. The swelling ability of the beads revealed two times higher than the one of the microcapsules.

  • PDF

A Study on the Preparation of Hollow Microspheres Using Waste Polystyrene (폐 Polystyrene을 이용한 중공 미세구 제조에 관한 연구)

  • Kwon, Soon Young;Woo, Je-Wan
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.205-210
    • /
    • 2006
  • In this study, polystyrene hollow microspheres were prepared via optimized purifying steps for the reuse of waste polystyrene. PS/PVA double layered hollow microspheres were prepared using the multiple emulsion ($W_1/O/W_2$) method with recycled polystyrene. The sonication treatment at the first stage of $W_1/O$ emulsion formation was very important factor of control of particle size and its distribution. When sonication was treated for 20 seconds, the average particle size and distribution were $1.35{\mu}m$ and $0.8{\mu}m{\sim}2.8{\mu}m$, respectively. The double layered hollow microspheres that have smaller and uniformed particle size distribution were manufactured when gelatin or Tween 80 was used as surfactants in the $W_2$ phase.

  • PDF

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

The effect of osmotic pressure in W/O/W multiple emulsion (다상 에멀전 형성에 있어 삼투 현상이 미치는 영향)

  • 신중진;이근수;강기춘;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.139-148
    • /
    • 2000
  • The osmotic pressure is a one of the most important factor affecting stabilization of multiple emulsion in a law hours after experiment. To understand and decrease osmotic pressure between Wl phase and W2 phase, a kinds of humectants were introduced in outer water phase. As a result, Betaine and Glucose had an excellent effect reducing osmotic pressure and NaCl made W/O/W emulsion more stable than MgSO4 did when introduced in inner water phase.

  • PDF