• Title/Summary/Keyword: (fuzzy) ideal

Search Result 204, Processing Time 0.024 seconds

Development of Self-Tuning and Adaptive Fuzzy Controller to Control Induction Motor Drive (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.32-34
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good Performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed model reference adaptive fuzzy control(MFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaption mechanism(FAM), MFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, MFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

High Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller (다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.404-407
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation even under ideal field oriented conditions. This paper is proposed adaptive fuzzy controller(AFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaptation mechanism(FAM), AFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, AFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

Fuzzy Set Based Agent System for Adaptive Tutoring (적응형 교수 학습을 위한 퍼지 집합 기반 에이젼트 시스템)

  • Choi, Sook-Young;Yang, Hyung-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.321-330
    • /
    • 2003
  • This paper proposes an agent-based adaptive tutoring system that monitors learning process of learners' and provides learning materials dynamically according to the analyzed learning character. Furthermore, it uses fuzzy concept to evaluate learners' ability and to provide learning materials appropriate to the level of learners'. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using agent, monitoring continually the learning process of learners 'inferencing to offer proper hints in case of incorrect answer in learning assesment, composing dynamically learning materials according to the learning feature and the evaluation of assesment, our system implements effectively adaptive instruction system. Moreover, appling the fuzzy concept to the system could naturally consider and ideal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.

Evaluation of Edge Detector′s Smoothness using Fuzzy Ambiguity (퍼지 애매성을 이용한 에지검출기의 평활화 정도평가)

  • Kim, Tae-Yong;Han, Joon-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.649-661
    • /
    • 2001
  • While the conventional edge detection can be considered as the problem of determining the existence of edges at certain locations, the fuzzy edge modeling can be considered as the problem of determining the membership values of edges. Thus, if the location of an edge is unclear, or if the intensity function is different from the ideal edge model, the degree of edgeness at the location is represented as a fuzzy membership value. Using the concept of fuzzy edgeness, an automatic smoothing parameter evaluation and selection method for a conventional edge detector is proposed. This evaluation method uses the fuzzy edge modeling, and can analyze the effect of smoothing parameter to determine an optimal parameter for a given image. By using the selected parameter we can detect least ambiguous edges of a detection method for an image. The effectiveness of the parameter evaluation method is analyzed and demonstrated using a set of synthetic and real images.

  • PDF

Disaster Recovery Priority Decision for Credit Bureau Business Information System: Fuzzy-TOPSIS Approach (신용조회업무 정보시스템의 재난복구 우선순위결정: 퍼지 TOPSIS 접근방법)

  • Yang, Dong-Gu;Kim, Ki-Yoon
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.173-193
    • /
    • 2016
  • The aim of this paper is to extend the TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) to the fuzzy environment for solving the disaster recovery priority decision problem in credit bureau business information system. In this paper, the rating of each information systems and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. Then, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all information systems. The combination between the fuzzy set and TOPSIS brings several benefits when compared with other approaches, such that the fuzzy TOPSIS require few fuzzy judgements to parameterization, which contributes to the agility of the decision process, it does not limit the number of alternatives simultaneously evaluated, and it does not cause the ranking reversal problem when a new alternative is included in the evaluation process. This paper is demonstrated with a real case study of a credit rating agency involving 9 evaluation criteria and 9 credit bureau business information systems assessed by 6 evaluators, and provide the systematic disaster recovery framework for BCP(Business Continuity Planning) to practitioner. Finally, this paper show that the procedure of the proposed fuzzy TOPSIS method is well suited as a decision-making tool for the disaster recovery priority decision problem in credit bureau business information system.

  • PDF

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

Group Decision Making for New Professor Selection Using Fuzzy TOPSIS (퍼지 TOPSIS를 이용한 신임교수선택을 위한 집단의사결정)

  • Kim, Ki-Yoon;Yang, Dong-Gu
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.229-239
    • /
    • 2016
  • The aim of this paper is to extend the TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) to the fuzzy environment for solving the new professor selection problem in a university. In order to achieve the goal, the rating of each candidate and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. In this paper, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all candidates. This research derived; 1) 4 evaluation criteria(research results, education and research competency, personality, major suitability) for new professor selection, 2) the 5 step procedure of the proposed fuzzy TOPSIS method for the group decision, 3) priorities of 4 candidates in the new professor selection case. The results of this paper will be useful to practical expert who is interested in analyzing fuzzy data and its multi-criteria decision-making tool for personal selection problem in personal management. Finally, the theoretical and practical implications of the findings were discussed and the directions for future research were suggested.

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

Risk Assessment of Marine LPG Engine Using Fuzzy Multicriteria HAZOP Technique (퍼지 다기준 HAZOP 기법을 이용한 해상용 LPG 엔진의 위험성 평가)

  • Siljung Yeo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2023
  • Liquefied petroleum gas (LPG) is an attractive fuel for ships considering its current technology and economic viability. However, safety guidelines for LPG-fueled ships are still under development, and there have been no cases of applying LPG propulsion systems to small and medium-sized ships in Korea. The purpose of this study was to perform an objective risk assessment for the first marine LPG engine system and propose safe operational standards. First, hazard and operability (HAZOP) analysis was used to divide the engine system into five nodes, and 58 hazards were identified. To compensate for the subjectivity of qualitative evaluation using HAZOP analysis, fuzzy set theory was used, and additional risk factors, such as detectability and sensitivity, were included to compare the relative weights of the risk factors using a fuzzy analytical hierarchy process. As a result, among the five risk factors, those with a major impact on risk were determined to be the frequency and severity. Finally, the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was applied to select the risk rank more precisely by considering the weights of the risk factors. The risk level was divided into 47 groups, and the major hazard during the operation of the engine system was found through the analysis to be gas leakage during maintenance of the LPG supply line. The technique proposed can be applied to various facilities, such as LPG supply systems, and can be utilized as a standard procedure for risk assessment in developing safety standards for LPG-powered ships.