• Title/Summary/Keyword: (MIMO) systems

Search Result 861, Processing Time 0.033 seconds

Novel MIMO Communication Scheme for Enhanced Indoor Performance in Distributed Antenna Systems

  • Cho, Bong-Youl;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • Multiple input multiple output (MIMO) has been considered one of the key enablers of broadband wireless communications. The indoor environment is known to be favorable to ensure both high rank property and high signal-to-interference/noise ratio (SINR) to fully exploit MIMO spatial multiplexing (SM) gain. In this paper, we describe several practical deployment cases where repeater links (or relay links), such as those present with an indoor distributed antenna system (DAS), can act as keyholes to degenerate the rank property of MIMO communications. In this case, we cannot exploit MIMO SM gain in indoor environment. We propose a novel MIMO communication scheme which uses simple converter in the devices in repeater links to resolve the rank degeneration issue and to ensure MIMO SM gain in highly MIMO-favorable indoor environment. MIMO SM is possible over the indoor DAS with single cable line through use of simple converters, which enables practical deployment in real fields.

Performance Analysis of Maximum Likelihood Joint Detection for MIMO MC-CDMA Systems (순방향 다중 안테나 MC-CDMA 시스템에서 Maximum Likelihood 합동 검파 성능 분석)

  • Kim, Young-Ju;Song, Hyoung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.1-8
    • /
    • 2008
  • In this paper, we analyze the symbol error rate (SER) performance of maximum likelihood (ML) joint detection in downlink multiple-input multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) systems by deriving a tight union bound on the symbol error rate (SER). The union bound for ML joint detection is utilized to demonstrate the performance of MIMO MC-CDMA systems quantitatively in multiuser and frequency selective Rayleigh fading environments. An analysis of the diversity order of the systems shows the effects of multiple users, spread subcarriers, and multiple antennas on the ML joint detection performance. Furthermore, the analysis shows that MIMO MC-CDMA systems without full loading can achieve more diversify than MIMO orthogonal frequency division multiplexing (OFDM) systems.

Massive MIMO TWO-Hop Relay Systems Over Rician Fading Channels

  • Cao, Jian;Yu, Shujuan;Yang, Jie;Zhang, Yun;Zhao, Shengmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5410-5426
    • /
    • 2019
  • With the advent of the fifth-generation (5G) era, Massive multiple-input multiple-output (MIMO) relay systems have experienced the rapid development. Recently, the performance analysis models of Massive MIMO relay systems have been proposed, which are mostly based on Rayleigh fading channels. In order to create a more suitable model for 5G Internet of Things scenarios, our study is based on the Rician fading channels, where line-of-sight (LOS) path exists in the channels. In this paper, we assume the channel state information (CSI) is perfect. In this case, we use statistical information to derive the analytical exact closed-form expression for the achievable sum rate of the uplink for the Massive MIMO two-hop relay system over Rician fading channels. Moreover, considering the different communication scenarios, we derive the analytical exact closed-form expression for the achievable sum rates of the uplink for other three scenarios. Finally, based on these expressions, we make simulations and analyze the performance under different transmit powers and Rician-factors, which provides a theoretical basis and reference for further research.

MIMO Vector Channel Modeling and Performance Analysis in Underwater Channel Environments (수중 MIMO 벡터 채널 모델링 및 성능 분석)

  • Lee, Deok-Hwan;Ko, Hak-Lim;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.426-431
    • /
    • 2007
  • In this paper we have studied the underwater vector channel modeling for MIMO(Multiple Input Multiple Output) to increase the performance and efficiency for ultrasound communication in underwater channel environments. Also we have analyzed the MIMO techniques using the proposed channel modeling. For underwater MIMO channel modeling. experiments were done in real channel environments and the data were analyzed to estimate parameters such as fading, Doppler, time delay, angle of arrival, and receiving power. These were used for modeling of underwater vector channel modeling for MIMO. Additionally, we have analyzed the performance of MIMO systems using our proposed channel models. As a result we could see that the BER has decreased severely with the same SNR when using the MIMO system.

The channel estimation scheme for the IEEE 802.11a based MIMO-OFDM systems (IEEE 802.11a 기반의 MIMO-OFDM 시스템을 위한 채널 추정 기법)

  • 안치준;안재민
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.545-548
    • /
    • 2003
  • MIMO-OFDM 시스템은 다중 안테나 송신을 통하여 시스템의 capacity를 극대화 하지만, 이를 위해서는 정확한 채널계수 값의 추정을 필요로 한다. 본 논문에서는 MIMO-OFDM시스템을 위한 채널계수 추정기법으로서 Space-Time Coding(STC)에 기반을 둔 방식을 제안한다. 제안된 채널 계수 추정 기법을 위해 필요한 심볼 구조, frame 구조를 IEEE 802.11a 시스템에 적용하였다. VBLAST 기법이 적용된 IEEE 802.11a 기반의 4 by 4 MIMO-OFDM 시스템에 대한 모의 실험을 통하여 제안된 방법의 성능과 기존의 방법의 성능을 coded BER를 통해 비교 분석해 보았다.

  • PDF

The channel estimation scheme for the IEEE 802.11a based MIMO-OFDM systems (IEEE 802.11a기반의 MIMO-OFDM 시스템을 위한 채널 추정기법)

  • 안치준;안재민
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.204-207
    • /
    • 2003
  • MIMO-OFDM 시스템은 다중 안테나 송신을 통하여 시스템의 capacity를 극대화하지만, 이를 위해서는 정확한 채널 계수 값의 추정을 필요로 한다. 본 논문에서 는 MIMO-OFDM 시스템을 위한 채널계수 추정기법으로서 Space-Time Coding(STC)에 기반을 둔 방식을 제안한다. 제안된 채널계수 추정기법을 위해 필요한 심볼구조, frame 구조를 IEEE 802.11a 시스템에 적용하였다. VBLAST 기법이 적용된 IEEE 802.11a 기반의 4 by 4 MIMO-OFDM 시스템에 대한 모의실험을 통하여 제안된 방법의 성능과 기존의 방법의 성능을 coded BER를 통해 비교 분석해 보았다.

  • PDF

Study on Improved Polarized 2˟2 MIMO Spatial Multiplexing Method for DVB-NGH System (DVB-NGH 시스템을 위한 향상된 편파 2˟2 MIMO SM 기법 연구)

  • Seo, Jae Hyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-15
    • /
    • 2015
  • Recently terrestrial digital broadcasting systems have experienced a growth with the demand of high data rate. In order to meet such demand, the MIMO technology has received a wide attention. This paper proposes a pre-coding method, which provides high space channel correlation for the improved performance over terrestrial broadcasting channels when the polarized $2{\times}2$ MIMO SM is adopted for DVB-NGH systems. When signals with two different modulation orders are transmitted through two antennas, a method that is based on non-uniform power is also proposed for improved reception performance. To optimize the proposed method, phase shifting values for the pre-coding method and appropriate unequal power ratio are obtained. These obtained parameters are applied to a terrestrial broadcasting system, and then the performance improvement over the conventional SM is shown through computer simulations.

Carrier Frequency Offset Estimation Method for Single-Carrier MIMO Systems (단일 반송파 MIMO 시스템 기반의 PN 부호열을 이용한 반송파 주파수 오차 추정 기법)

  • Oh, Jong-Kyu;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.864-875
    • /
    • 2012
  • In this paper, we propose a carrier frequency offset estimation method for single-carrier MIMO systems. In the proposed method, phase rotated PN (Pseudo-Noise) sequences are transmitted to prevent a cancelling out of partial PN sequences. After removing a modulation of received PN sequences by multiplying of complex conjugated PN Sequences which are locally generated in receiver, a CFO (Carrier Frequency Offset) is accurately estimated by employing L&R method which is a kind of ML (Maximum Likelihood) estimation algorithm and uses multiple auto-correlatos. In addition, the frequency offset estimation scheme by using channel state information is proposed for accurate CFO estimation in time-varying Rayleigh channel. By performing computer simulations, MSE (Mean Square Error) performance of proposed method is almost same as MSE performance of SISO systems in AWGN channel. Moreover, MSE Performance of proposed method with using channel information is higher than MSE performances of SISO system and conventional method in time-varying Rayleigh channel.

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.433-436
    • /
    • 2013
  • Massive MIMO communication system with huge antennas has been attracting intensive attention as one of key technologies to increase the spectral efficiency. Many previous studies investigated single user Massive MIMO scheme in cellular downlink. Recently, however, intensive researches on multiuser-based Massive MIMO are performed to overcome the problem caused by the limited number of antennas in mobile stations. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states, where the number of selected antennas corresponds to the number of baseband and RF elements in base station. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems. Our simulation results indicate that the proposed antenna selection scheme can achieve comparable performance to the conventional scheme without antenna selection.

  • PDF

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.