• 제목/요약/키워드: (L, N)-structure

검색결과 787건 처리시간 0.024초

AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향 (Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

Antioxidant Activity of Manno-oligosaccharides Derived from the Hydrolysis of Polymannan by Extracellular Carbohydrase of Bacillus N3

  • Amna, Kashif Shaheen;Park, So Yeon;Choi, Min;Kim, Sang Yeon;Yoo, Ah Young;Park, Jae Kweon
    • 한국해양바이오학회지
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 2018
  • The aim of this study is to elucidate the biochemical properties of manno-oligosaccharides (MOS) hydrolyzed by extracellular enzyme of Bacillus N3. We strived to characterize the biochemical properties of MOS since N3 can effectively hydrolyzed natural polymannans such as galactomannan (GM) and konjac (glucomannan, KM), respectively. The hydrolysis of GM and KM was applied by the strain N3 in terms of reducing sugars and the highest production of reducing sugars was estimated to be about 750 mg/L and 370 mg/L respectively, which were quantified after 7 days of cultivation in the presence of both substrates. Hydrolysates derived from the hydrolysis of KM showed the significant antioxidant activity based on DPPH and ABTS radical scavenging activity with increasing of tyrosinase inhibitory activity. On the other hand, hydrolysates derived from the hydrolysis of GM showed only ABTS radical scavenging activity without showing significant changes on tyrosinase inhibitory activity. Our data suggest that those biological characteristics may be depend on the primary structure and the size of MOS, which may be useful as potent additives for diet foods.

미더덕 껍질을 이용한 셀룰로오스 필름의 제조 및 특성 (Properties of Regenerated Cellulose Films Prepared from the Tunicate Styela clava)

  • 정영진
    • 한국수산과학회지
    • /
    • 제41권4호
    • /
    • pp.237-242
    • /
    • 2008
  • The tunic of Styela clava(SCT) consists of a proteoglycan network. Regenerated cellulose films were prepared by solution casting and coagulation of SCT in N-methylmorpholine-N-oxide(NMMO)/$H_2O$(87/13 wt%). The crystalline structure of powdered SCT was primarily that of cellulose I. The crystalline structure of SCT films exhibited a cellulose II structure, similar to that of viscose rayon. Physical characterization of SCT films and fibers revealed an intrinsic viscosity($\eta$) of 6.35 dL/g, average molecular weight($M_w$) of 423,000 g/M, and fiber density of 1.50 $g/cm^3$ with a moisture regain and water absorption of 10.20% and 365%, respectively. The results were similar to those of cellulose films regenerated from wood pulp. Films prepared with 6 wt% SCT exhibited strong tensile strength, high water absorption, and a greater degree of elongation. Scanning electron micrographs(SEM) of film cross-sections showed a layered, sponge-like structure.

$La_{0.7}Sr_{0.3}FeO_{3}$ 세라믹스의 전기전도 특성 (Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_{3}$)

  • 정우환
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.376-382
    • /
    • 2001
  • Magnetic and transport properties in the ceramic specimen of L $a_{0.7}$S $r_{0.3}$Fe $O_3$ with orthohombic structure has been investigated. Weak ferromagnetism has been observed in a ceramic sample of L $a_{0.7}$S $r_{0.3}$Fe $O_3$. Large dielectric relaxation of Debye type is observed in paramagnetic states within the temperature range of 130K~200K. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dispersion is related to holes hopping between F $e^{3+}$ and F $e^{4+}$ ions. The temperature dependencies of thermoelectric power and Dc conductivity suggest that the charge carrier responsible for the conduction are strongly localized. These experimental results have been interpreted in terms of a hopping process involving small polaron.n.laron.n.

  • PDF

Solid-state Chracterization of the HIV Protease Inhibitor

  • Kim, Yong-Ae;Kim, Ae-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1729-1732
    • /
    • 2002
  • The LB71350,(3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy)carbonyl]-3-(methylsulfonyl)-L-valinyl]amino]-N-[2-methyl-(1R)-[(phenyl)carbonylpropyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than $40{\mu}g/mL.$ It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. $^{13}C$ Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of $^{13}C$ solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

Macrocyclic Tetraamine Bis(isocyanato-N)nickel (II) Complex

  • Park, Ki-Young;Kim, Moon-Jib;Lee, Chang-Hee;Seong, Baek-Seok;Lee, Jin-Ho;Suh, Il-Hwan
    • 한국결정학회지
    • /
    • 제9권2호
    • /
    • pp.92-95
    • /
    • 1998
  • The structure of bis(isocyanto-N)nickel (II) complex, [Ni(L)(NCO)2] (L: 2,5,9,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is centrosymmetric and the central nickel has an axially elongated octahedral geometry with two nitrogen atoms of the isocyanate ligand.

  • PDF

Theoretical Studies of Substituent Effects on S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권3호
    • /
    • pp.186-190
    • /
    • 1986
  • Effects of substituents in the nucleophile(X), the substrate(Y) and the leaving group(Z) on the structure of $S_N2$ transition states have been analyzed by considering effects of four components, electrostatic($E_{es}$), exchange repulsion ($E_{ex}$), polarization($E)_{pl}$) and charge transfer($E_{ct}$) terms, of interaction between the reactants on the degree of bond making and bond breaking. Prediction of net effects of all substituents(X, Y and Z) on the degree of bond making were found to be clearcut whereas the effect of an electron withdrawing group on the substrate (Y = EWG) on the degree of bond breaking was complex; the substituent(Y = EWG) is normally carbon-leaving group($C^{\ast}$-L) bond tightening($E_{pl}$ dominance) but becomes $C^{\ast}$-L bond loosening when the bond is strongly antibonding ($E_{ct}$ dominance). Our model calculations on the reaction of $CH_2XNH_2$ with $YCH_2COOCH_2Z$ using energy decomposition scheme have confirmed that predictions based on our analysis are correct.

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

CIGS 태양전지의 소수캐리어 확산 거리에 대한 새로운 측정 방안 연구 (Rapid and Accurate Measurement of Diffusion Length of Minority Carriers of CIGS Solar Cells)

  • 이돈환;김영수;모찬빈;남정규;이동호;박성찬;김병준;김동섭
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.59-62
    • /
    • 2014
  • Minority carrier diffusion length is one of the most important parameters of solar cells, especially for short circuit current density (Jsc). In this report, we proposed the calculating method of the minority carrier diffusion length ($L_n$) in CIGS solar cells through biased quantum efficiency (QE). To verify this method's reliability, we chose two CIGS samples which have different grain size and calculated $L_n$ for each sample. First of all, we calculated out that $L_n$ was 56nm and 97nm for small and large grain sized-cell through this method, respectively. Second, we found out the large grain sized-cell has about 7 times lower defect density than the small grain sized-cell using drive level capacitance profiling (DLCP) method. Consequently, we confirmed that $L_n$ was mainly affected by the micro-structure and defect density of CIGS layer, and could explain the cause of Jsc difference between two samples having same band gap.

메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성 (High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake)

  • 박수인;전준범;배효관
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.