• Title/Summary/Keyword: (I)DCT

Search Result 78, Processing Time 0.029 seconds

Image Compression using Validity and Zero Coefficients by DCT(Discrete Cosine Transform) (DCT에서 유효계수와 Zero계수를 이용한 영상 압축)

  • Kim, Jang Won;Han, Sang Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.97-103
    • /
    • 2008
  • In this paper, $256{\times}256$ input image is classified into a validity block and an edge block of $8{\times}8$ block for image compression. DCT(Discrete Cosine Transform) is executed only for the DC coefficient that is validity coefficients for a validity block. Predict the position where a quantization coefficient becomes 0 for an edge block, I propose new algorithm to execute DCT in the reduced region. Not only this algorithm that I proposed reduces computational complexity of FDCT(Forward DCT) and IDCT(Inverse DCT) and decreases encoding time and decoding time. I let compressibility increase by accomplishing other stability verticality zigzag scan by the block size that was classified for each block at the time of huffman encoding each. In addition, the algorithm that I suggested reduces Run-Length by accomplishing the level verticality zigzag scan that is good for a classified block characteristic and, I offer the compressibility that improved thereby.

  • PDF

An Effective Mode Decision Algorithm in H.264/AVC Encoder (H.264/AVC 부호화기에 대한 효과적인 모드 결정 알고리즘)

  • Moon Jeong-Mee;Kim Jae-Ho;Moon Yong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.250-257
    • /
    • 2006
  • In this paper, we propose an efficient algorithm for the RDO mode decision in H.264/AVC encoder. Based on the properties of DCT coefficients and the RDO mode decision processing, we derive a new condition for detecting an error block having all-zero DCT coefficient (AZCB). (I)DCT, (I)Q, and entropy coding are skipped for AZCBs in the proposed algorithm. It makes the reduction of the computational complexity for the RDO mode decision. Simulation results show that the proposed algorithm achieves computational saving over 40% compared to the conventional method.

Improved Intraframe Coding Method based on H.263 Annex I (H.263 Annex I 기반 화면내 부호화 기법의 성능개선)

  • 유국열
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.213-216
    • /
    • 2001
  • The H.263 Annex I method for the intraframe coding is based on the prediction in DCT domain, unlike JPEG, MPEG-1, and MPEG-2 where the intraframe coding uses block DCT, independent of the neighboring blocks. In this paper, we show the ineffectiveness of H.263 Annex I prediction method by mathematically deriving the spatial domain meaning of H.263 Annex I prediction method. Based on the derivation, we propose a prediction method which is based on the spatial correlation property of image signals. From the experiment and derivation, we verified the proposed method.

  • PDF

Improved DCT Coefficient Prediction Method for H.263-based Intraframe Coding (DCT 계수 예측을 이용한 H.263기반 화면내 부호화 성능 개선)

  • 유국열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1168-1175
    • /
    • 2001
  • H.263부호기에서 정지영상 부호화를 위한 부가 부호기법인 Annex I는 기존의 JPEG, MPEG-1, -2와는 달리 부호화하고자 하는 현재 블록의 DCT 계수를 기부호화된 블록의 DCT 계수들을 이용하여 예측부호화 (Differential Pulse Coded Modulation; DPCM)를 행하고, 이를 통한 부호화 이득의 향상을 얻고 있다. 본 논문에서는 이런 H.263 Annex I의 예측기법을 공간영역에서의 의미를 수학적으로 유도한다. 이를 통해서 H.263 Annex I의 예측기법의 비효율성을 지적하고, 영상신호의 특성에 맞게 예측방식을 수정한다. 제안된 DCT 계수 예측 방식과 기존의 H.263 Annex I 방식의 이론적인 예측성능을 평가하고, H.263 부호기에 적용하여 제안방식의 효율성을 검증한다.

  • PDF

Fast I Slice Encoding/Decoding Method in H.264/AVC (H.264/AVC에서 고속 I Slice 부호화/복호화 방법)

  • Oh, Hyung-Suk;Shin, Dong-In;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This paper develops a fast method performing intra prediction which only restores block boundary pixels without decoding all blocks in an I slice of H.264/AVC. To accomplish this, we develop a fast integer inverse DCT scheme that quickly decodes residual block boundary which can be consisted of references pixels. we add the restored block boundary pixels and appropriate calculated prediction pixels for each intra prediction mode and consist of needed reference pixels. The experiments showed that the proposed method produces the reliable performance with reducing the computational complexity, compared to conventional method when applied to H.264/AVC integer DCT.

MPEG-2 Video Watermarking in Quantized DCT Domain (양자화된 DCT 영역에서의 MPEG-2 비디오 워터마킹)

  • Im, Yong-Soon;Kang, Eun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.81-86
    • /
    • 2011
  • Watermarking is one of the methods that insist on a copyright as it append digital signals in digital informations.(image, video, ets) In this paper, we proposed a digital watermarking algorithm which improved Gradient of DCT Coefficient. This method targets MPEG-2 TM5 system and watermarking process is to be performed during Quantization DCT. Watermark was inserted on Y components of each frames. The PSNR difference between the compressed images with and without watermarking was only 0..23dB. In each case that the resulting image was reusable the normalized correlation between the extracted watermark and the original one was above 0.99.

Scene Change Detection Techniques Using DC components and Moving Vector in DCT-domain of MPEG systems (MPEG system의 DCT변환영역에서 DC성분과 움직임 벡터를 이용한 영상 장면전환 검출기법)

  • 박재두;이광형
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.28-34
    • /
    • 1999
  • In this paper. we propose the method of Scene Change Detection for video sequence using the DC components and the moving vectors in the Macro Blocks in the DCT blocks. The proposed method detects the Scene Change which would not be related with the specific sequences in the compressed MPEG domain. To do this. we define new metrics for Scene Change Detection using the features of picture component and detect the exact Scene Change point of B-pictures using the characteristics of B-picture's sharp response for the moving vectors. In brief, we will detect the cut point using I-picture and the gradual scene changes such as dissolve, fade, wipe, etc. As a results, our proposed method shows good test results for the various MPEG sequences.

Study of Variation of Internal Taget Volume between 4DCT and Slow-CT in Respiratory Patterns Using Respiratory Motion Phantom (호흡 동조 구동 팬톰을 이용한 호흡패턴에 따른 4DCT, Slow-CT의 내부표적체적 변화 연구)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Ji, Young Hoon;Kim, Mi-Sook;Yoo, Hyoung Jun;Kim, Chan Hyeong;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.53-63
    • /
    • 2014
  • The objective of this study is to investigate the difference of ITV lengths and ITVs between 4DCT and Slow-CT images according to respiratory patterns using a respiratory motion phantom. The respiratory periods 1~4 s and target motion 1~3 cm were applied on each respiratory pattern. 4DCT and Slow-CT images were acquired for 3 times. 4DCT and Slow-CT ITVs were measured with contouring the target in the Eclipse RTP system. The measured ITV lenghts and ITVs in 4DCT and Slow-CT images were compared to the known values. For the ITV lengths and ITVs in the 4DCT, the difference of them were reduced as the respiratory period is longer and target motion is shorter. For the Slow-CT, there was same tendency with change in 4DCT ITV lengths and ITVs about target motion. However, the difference of ITV lengths and ITVs for the respiratory periods were the lowest in respiratory period 1 second and different slightly within respiratory period 2-4 seconds. According to the respiratory patterns, pattern A had the highest reproducibility. Pattern B, C and D were showed the difference similar to each other. However, for pattern E, the reproducibility was the lowest compared with other four patterns. The difference of ITV lengths and ITVs between Slow-CT and 4DCT was increased by increasing the respiratory periods and target motion for all respiratory patterns. When the difference of Slow-CT ITV lengths and ITVs were compared with that of 4DCT ITV lengths and ITVs, Slow-CT ITV lengths and ITVs were approximately 22 % smaller than 4DCT, and the representations of target were different in each pattern. In case of pattern A, B and C, length difference was 3 mm at S (superior) and I (inferior) direction, and the length difference of pattern D was 1.45 cm at only "I" direction whereas the length difference of pattern E was 5 mm longer in "S" direction than "I" direction. Therefore, the margin in SI directions should be determined by considering the respiratory patterns when the margin of Slow-CT is compensated for 4DCT ITV lengths. Afterward, we think that the result of this study will be useful to analyze the ITV lengths and ITVs from the CT images on the basis of the patient respiratory signals.

Two-dimensional DCT arcitecture for imprecise computation model (중간 결과값 연산 모델을 위한 2차원 DCT 구조)

  • 임강빈;정진군;신준호;최경희;정기현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.22-32
    • /
    • 1997
  • This paper proposes an imprecise compuitation model for DCT considering QOS of images and a two dimensional DCT architecture for imprecise computations. In case that many processes are scheduling in a hard real time system, the system resources are shared among them. Thus all processes can not be allocated enough system resources (such as processing power and communication bandwidth). The imprecise computtion model can be used to provide scheduling flexibility and various QOS(quality of service)levels, to enhance fault tolerance, and to ensure service continuity in rela time systems. The DCT(discrete cosine transform) is known as one of popular image data compression techniques and adopted in JPEG and MPEG algorithms since the DCT can remove the spatial redundancy of 2-D image data efficiently. Even though many commercial data compression VLSI chips include the DCST hardware, the DCT computation is still a very time-consuming process and a lot of hardware resources are required for the DCT implementation. In this paper the DCT procedure is re-analyzed to fit to imprecise computation model. The test image is simulated on teh base of this model, and the computation time and the quality of restored image are studied. The row-column algorithm is used ot fit the proposed imprecise computation DCT which supports pipeline operatiions by pixel unit, various QOS levels and low speed stroage devices. The architecture has reduced I/O bandwidth which could make its implementation feasible in VLSI. The architecture is proved using a VHDL simulator in architecture level.

  • PDF

A Distortion Estimation Method Using Integer Operations in H.264/AVC Encoder (H.264/AVC 부호화기에서 정수 연산을 사용한 왜곡치 예측 방식)

  • Moon, Jeong-Mee;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.63-71
    • /
    • 2009
  • In this paper, a new low-complexity distortion estimation method for H.264 rate-distortion optimized mode decision is proposed. The coding processes, such as DCT, quantization, inverse quantization, inverse DCT, and reconstruction are needed to compute the distortion in an H.264 encoder. To reduce these processes, we estimate distortion using integer operations with coefficients obtained in the quantization process. Inverse quantization, inverse DCT, and reconstruction processes are not needed by the proposed method. For quantization parameters 24 to 36, experimental results show that the time saving of rate-distortion optimized mode decision is on average 29 % and as high as 42 % with negligible degradation in coding performance.