• Title/Summary/Keyword: (CNN) Convolutional neural network

Search Result 980, Processing Time 0.026 seconds

Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN) (Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출)

  • Choi, Sung-Pil
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2017
  • In this paper, we propose a revised Deep Convolutional Neural Network (DCNN) model to extract Protein-Protein Interaction (PPIs) from the scientific literature. The proposed method has the merit of improving performance by applying various global features in addition to the simple lexical features used in conventional relation extraction approaches. In the experiments using AIMed, which is the most famous collection used for PPI extraction, the proposed model shows state-of-the art scores (78.0 F-score) revealing the best performance so far in this domain. Also, the paper shows that, without conducting feature engineering using complicated language processing, convolutional neural networks with embedding can achieve superior PPIE performance.

Comparison of Convolutional Neural Network Models for Image Super Resolution

  • Jian, Chen;Yu, Songhyun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.63-66
    • /
    • 2018
  • Recently, a convolutional neural network (CNN) models at single image super-resolution have been very successful. Residual learning improves training stability and network performance in CNN. In this paper, we compare four convolutional neural network models for super-resolution (SR) to learn nonlinear mapping from low-resolution (LR) input image to high-resolution (HR) target image. Four models include general CNN model, global residual learning CNN model, local residual learning CNN model, and the CNN model with global and local residual learning. Experiment results show that the results are greatly affected by how skip connections are connected at the basic CNN network, and network trained with only global residual learning generates highest performance among four models at objective and subjective evaluations.

  • PDF

Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN (계층적 CNN을 이용한 방송 매체 내의 객체 인식 시스템 성능향상 방안)

  • Kwon, Myung-Kyu;Yang, Hyo-Sik
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2017
  • This paper is a smartphone object recognition system using hierarchical convolutional neural network. The overall configuration is a method of communicating object information to the smartphone by matching the collected data by connecting the smartphone and the server and recognizing the object to the convergence neural network in the server. It is also compared to a hierarchical convolutional neural network and a fractional convolutional neural network. Hierarchical convolutional neural networks have 88% accuracy, fractional convolutional neural networks have 73% accuracy and 15%p performance improvement. Based on this, it shows possibility of expansion of T-Commerce market connected with smartphone and broadcasting media.

Convolutional neural network based amphibian sound classification using covariance and modulogram (공분산과 모듈로그램을 이용한 콘볼루션 신경망 기반 양서류 울음소리 구별)

  • Ko, Kyungdeuk;Park, Sangwook;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-65
    • /
    • 2018
  • In this paper, a covariance matrix and modulogram are proposed for realizing amphibian sound classification using CNN (Convolutional Neural Network). First of all, a database is established by collecting amphibians sounds including endangered species in natural environment. In order to apply the database to CNN, it is necessary to standardize acoustic signals with different lengths. To standardize the acoustic signals, covariance matrix that gives distribution information and modulogram that contains the information about change over time are extracted and used as input to CNN. The experiment is conducted by varying the number of a convolutional layer and a fully-connected layer. For performance assessment, several conventional methods are considered representing various feature extraction and classification approaches. From the results, it is confirmed that convolutional layer has a greater impact on performance than the fully-connected layer. Also, the performance based on CNN shows attaining the highest recognition rate with 99.07 % among the considered methods.

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

Facial Expression Classification Using Deep Convolutional Neural Network (깊은 Convolutional Neural Network를 이용한 얼굴표정 분류 기법)

  • Choi, In-kyu;Song, Hyok;Lee, Sangyong;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.162-172
    • /
    • 2017
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. To overcome the disadvantages of existing facial expression databases, various databases are used. In the proposed technique, we construct six facial expression data sets such as 'expressionless', 'happiness', 'sadness', 'angry', 'surprise', and 'disgust'. Pre-processing and data augmentation techniques are also applied to improve efficient learning and classification performance. In the existing CNN structure, the optimal CNN structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of fully-connected layer nodes. Experimental results show that the proposed scheme achieves the highest classification performance of 96.88% while it takes the least time to pass through the CNN structure compared to other models.

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

Implementation of Handwriting Number Recognition using Convolutional Neural Network (콘볼류션 신경망을 이용한 손글씨 숫자 인식 구현)

  • Park, Tae-Ju;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.561-562
    • /
    • 2021
  • CNN (Convolutional Neural Network) is widely used to recognize various images. In this presentation, a single digit handwritten by humans was recognized by applying the CNN technique of deep learning. The deep learning network consists of a convolutional layer, a pooling layer, and a platen layer, and finally, we set an optimization method, learning rate and loss functions.

  • PDF

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Design and Implementation of Automotive Intrusion Detection System Using Ultra-Lightweight Convolutional Neural Network (초경량 Convolutional Neural Network를 이용한 차량용 Intrusion Detection System의 설계 및 구현)

  • Myeongjin Lee;Hyungchul Im;Minseok Choi;Minjae Cha;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.524-530
    • /
    • 2023
  • This paper proposes an efficient algorithm to detect CAN (Controller Area Network) bus attack based on a lightweight CNN (Convolutional Neural Network), and an IDS(Intrusion Detection System) was designed, implemented, and verified with FPGA. Compared to conventional CNN-based IDS, the proposed IDS detects CAN bus attack on a frame-by-frame basis, enabling accurate and rapid response. Furthermore, the proposed IDS can significantly reduce hardware since it exploits only one convolutional layer, compared to conventional CNN-based IDS. Simulation and implementation results show that the proposed IDS effectively detects various attacks on the CAN bus.