• Title/Summary/Keyword: (-)-epigallocatechin-3-gallate (EGCG)

Search Result 149, Processing Time 0.029 seconds

Inhibitory Effects of EGCG on the Dopaminergic Neurons

  • Heo, Tag;Jang, Su-Jeong;Kim, Song-Hee;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • This study was designed to investigate the effects of high concentration of (-)-epigallocatechin-3-gallate(EGCG) on the neuronal activity of rat substantia nigra dopaminergic neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated dopaminergic neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 18 dopaminergic neurons(80%) revealed inhibitory responses to 40 and 100 ${\mu}M$ of EGCG and 4 neurons(20%) did not respond to EGCG. The spike frequency and resting membrane potential of these cells were decreased by EGCG. The amplitude of afterhyperpolarization was increased by EGCG. Whole potassium currents of dopaminergic neurons were increased by EGCG(n=10). These experimental results suggest that high concentration EGCG decreases the neuronal activity of the dopaminergic neurons by altering the resting membrane potential and afterhyperpolarization.

  • PDF

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

(-)-Epigallocatechin Gallate Inhibits the Pacemaker Activity of Interstitial Cells of Cajal of Mouse Small Intestine

  • Kim, Kweon-Young;Choi, Soo-Jin;Jang, Hyuk-Jin;Zuo, Dong-Chuan;Shahi, Pawan Kumar;Parajuli, Shankar Prasad;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.111-115
    • /
    • 2008
  • The effects of (-)-epigallocatechin gallate (EGCG) on pacemaker activities of cultured interstitial cells of Cajal (ICC) from murine small intestine were investigated using whole-cell patch-clamp technique at $30^{\circ}C$ and $Ca^{2+}$ image analysis. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. The treatment of ICC with EGCG resulted in a dose-dependent decrease in the frequency and amplitude of pacemaker currents. SQ-22536, an adenylate cyclase inhibitor, and ODQ, a guanylate cyclase inhibitor, did not inhibit the effects of EGCG. EGCG-induced effects on pacemaker currents were not inhibited by glibenclamide, an ATP-sensitive $K^+$ channel blocker and TEA, a $Ca^{2+}$-activated $K^+$ channel blocker. Also, we found that EGCG inhibited the spontaneous $[Ca^{2+}]_i$ oscillations in cultured ICC. In conclusion, EGCG inhibited the pacemaker activity of ICC and reduced $[Ca^{2+}]_i$ oscillations by cAMP-, cGMP-, ATP-sensitive $K^+$ channel-independent manner.

Epigallocatechin-3-gallate Regulates NADPH Oxidase Expression in Human Umbilical Vein Endothelial Cells

  • Ahn, Hee-Yul;Kim, Chan-Hyung;Ha, Tae-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.325-329
    • /
    • 2010
  • Vascular NADPH oxidase plays a pivotal role in producing superoxide in endothelial cells and thus acts in the initiation and development of inflammatory cardiovascular diseases such as atherosclerosis. Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects for treating cardiovascular disease but the effect of EGCG on the expression of vascular NADPH oxidase remains unknown. In this study, we investigated the mechanism(s) by which EGCG might inhibit the expression of subunits of NADPH oxidase, namely $p47^{phox}$, $p67^{phox}$ and $p22^{phox}$, induced by angiotensin II (Ang II) in human umbilical vein endothelial cells. Ang II increased the expression levels of $p47^{phox}$, $p67^{phox}$, and $p22^{phox}$, but EGCG counteracted this effect on $p47^{phox}$. Moreover, EGCG did not affect the production of reactive oxygen species induced by Ang II. These data suggest a novel mechanism whereby EGCG might provide direct vascular benefits for treating inflammatory cardiovascular diseases.

Antimicrobial Activity of Epigallocatechin Gallate (EGCG) extracted from Green Tea (Camellia sinensis) against Cronobacter spp. and Salmonella spp. in Various Dairy Products: A Preliminary Study (다양한 유제품에 이용될 수 있는 녹차(Camellia sinensis)에서 추출한 EGCG(Epigallocatechin gallate)의 Cronobacter spp.와 Salmonella spp.에 대한 항미생물 활성 효과에 관한 연구: 예비실험연구)

  • Kim, Kwang-Yeop;Kim, Young-Ji;Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • The main constituent of tea catechins, EGCG [(-)-Epigallocatechin-3-gallate], could inhibit the growth of various microorganisms and differently affect gram-positive and gram-negative bacteria. Antimicrobial activity of EGCG, a compound from green tea (Camellia sinensis) extract, against Cronobacter spp. and Salmonella spp. was studied to evaluate the possibility of using EGCG as a natural food additive in various dairy products. In pure TSB culture, the growth of Cronobacter spp. was suppressed below the detection limit (1 log CFU/mL) depending on EGCG concentration ($600{\sim}800{\mu}g/mL$), after 5~16 days at $4^{\circ}C$. Similarly, the growth of Salmonella spp. was suppressed below the detection limit (1 log CFU/mL) depending on EGCG concentration ($400{\sim}800{\mu}g/mL$), after 5~16 days at $4^{\circ}C$. Therefore, these results suggest that EGCG could be used as an effective additive to inhibit the growth of Cronobacter spp. and Salmonella spp. in various dairy products, such as yoghurt, cheese, dried infant powder, and so on.

(-)-Epigallocatechin-3-gallate Modulates the Differential Expression of Survivin Splice Variants and Protects Spermatogenesis During Testicular Torsion

  • Al-Ajmi, Nada;Al-Maghrebi, May;Renno, Waleed Mohammed
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.259-265
    • /
    • 2013
  • The anti-apoptotic effect of (-)-epigallocatechin-3-gallate (EGCG) during unilateral testicular torsion and detorsion (TT/D) was established in our previous study. In mice, the smallest inhibitor of apoptosis, survivin, is alternatively spliced into three variants, each suggested to have a unique function. Here, we assessed how EGCG exerts its protective effect through the expression of the different survivin splice variants and determined its effect on the morphology of the seminiferous tubules during TT/D. Three mouse groups were used: sham, TT/D+vehicle and TT/D treated with EGCG. The expression of the survivin variants (140 and 40) and other apoptosis genes (p53, Bax and Bcl-2) was measured with semi-quantitative RT-PCR. Histological analysis was performed to assess DNA fragmentation, damage to spermatogenesis and morphometric changes in the seminiferous tubules. In the TT/D+vehicle group, survivin 140 expression was markedly decreased, whereas survivin 40 expression was not significantly different. In parallel, there was an increase in the mRNA level of p53 and the Bax to Bcl-2 ratio in support of apoptosis induction. Histological analyses revealed increased DNA fragmentation and increased damage to spermatogenesis associated with decreased seminiferous tubular diameter and decreased germinal epithelial cell thickness in the TT/D+vehicle group. These changes were reversed to almost sham levels upon EGCG treatment. Our data indicate that EGCG protects the testis from TT/D-induced damage by protecting the morphology of the seminiferous tubules and modulating survivin 140 expression.

Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor

  • Lade, Harshad;Paul, Diby;Kweon, Ji Hyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1908-1919
    • /
    • 2015
  • This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gram-negative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with one-half MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm2 of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm2). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

Cancer Prevention Effect of Epigallocatechin-3-gallate through Regulate in C-terminal Src Kinase (CSK) Signaling Pathway (녹차성분 EGCG의 CSK 단백질 조절을 통한 암예방 효과)

  • Kim, Dae Yong;Choi, Bu Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • A great interest is emerging about green tea as a tool against human cancer proliferation or inflammation, as pointed out by recent reports describing the inhibitory action of epigallocatechin gallate (EGCG) on angiogenesis, urokinase, metalloproteinases, and induction of inducible nitric oxide synthase. We proposed that EGCG may regulate a multi target signaling having wider spectra of action than those actions of single enzymes. CSK (c-terminal Src kinase) protein is a non-receptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Based on the knowledge that CSK activation is important for cancer proliferation we hypothesized that CSK could be a target of EGCG. Here we showed that EGCG effectively suppressed the growth of CSK MEF cell when compare with CSK knockout MEF cell growth. These results indicate that EGCG could be used as a chemoprevention to modulate CSK signal pathway in inflammatory processes and tumor formation.

Effects of dietary polyphenol (-)-epigallocatechin-3-gallate on the differentiation of mouse C2C12 myoblasts (식이성 폴리페놀 (-)-epigallocatechin-3-gallate가 mouse C2C12 myoblast 분화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.420-426
    • /
    • 2007
  • In the present investigation, we studied the modulating effects of (-)-epigallocatechin-3-gallate(EGCG) on the differentiation of mouse C2C12 myoblasts. We found that the strong inhibitory effect of EGCG on DNA methyltransferase-mediated DNA methylation induced transdifferentiation of C2C12 myoblasts into smooth muscle cells demonstrated by both morphological changes and immunofluorescent staining. C2C12 myoblasts treated with EGCG for 4 days expressed smooth muscle ${\alpha}-actin$ protein. Real-time PCR data revealed that smooth muscle ${\alpha}-actin$ mRNA was induced by EGCG treated C2C12 myoblasts in a concentration-dependent manner. Smooth muscle ${\alpha}-actin$ mRNA concentration increased 330% and 490% after 2 and 3 days of 50 ${\mu}M$ of EGCG treatment. The expression of another smooth muscle marker, transgelin, mRNA was also increased up to 9-fold by 4 days of EGCG treatment compared with control in a concentration-dependent manner. These results suggested that C2C12 enables to transdifferentiate into smooth muscle when gene expression patterns are changed by the inhibition of DNA methylation induced by EGCG. In conclusion, transdifferentiation of C2C12 myoblasts into smooth muscle is resulted from the modulating effects of EGCG on DNA methylation which subsequently results in changing the expression pattern of several genes playing a critical role in the differentiation of C2C12 myoblasts.

Preventive Effects of a Major Component of Green Tea, Epigallocathechin-3-Gallate, on Hepatitis-B Virus DNA Replication

  • Karamese, Murat;Aydogdu, Sabiha;Karamese, Selina Aksak;Altoparlak, Ulku;Gundogdu, Cemal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4199-4202
    • /
    • 2015
  • Background: Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti-tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. Materials and Methods: HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. Results: Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than $100{\mu}M$. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. Conclusions: The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.