• Title/Summary/Keyword: (예측)타당도

Search Result 114, Processing Time 0.017 seconds

A study on the factors to affect the career success among workers with disabilities (지체장애근로자의 직업성공 요인에 관한 연구)

  • Lee, Dal-Yob
    • 한국사회복지학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.185-216
    • /
    • 2003
  • This study was aimed at investigating important factors influencing career success among regular workers. The current researcher scrutinized the degree to which variables and factors affect the career success and occupational turnover rates of the research participants. At the same tune, two hypothetical path models established by the researcher were examined using linear multiple regression methods and the LISREL. After examining the differences among the factors of career success, a comparison was made between the disabled worker group and the non-disabled worker group. A questionnaire using the 5-point Likert scale was distributed to a group of 374 workers with disabilities and 463 workers without disabilities. For the data analysis purpose, the structural equation model, factor analysis, correlation analysis, and multiple regression analysis were carried out. The results of this study ran be summarized as follows. First, the results of factor analysis showed important categories of conceptual themes of career success. The initial conceptual factor model did not accord with the empirical one. A three-factorial model revealed categories of personal, family, and organizational factor respectively. The personal factor was composed of the self-esteem and self-efficiency. The family factor was consisted of the multi-roles stress and the number of children. Finally, the organizational factor was composed of the capacity for utilizing resources, networking, and the frequency of mentoring. In addition, the total 10 sub areas of career success were divided by two important aspects; the subjective career success and the objective career success. Second, both research participant groups seemed to be influenced by their occupational types. However, all predictive variables excluding the wage rate and the average length of work years had significant impact on job success for the disabled work group, while all the variables excluding the frequency of advice and length of working years had significant impact on job success for the non-disabled worker group. Third, the turnover rate was significantly influenced by the age and the experience of turnover of the research participants. However, the number of co-workers was the strongest predictive variable for the worker group with disabilities, but the occupation choice variable for the worker group without disabilities. For the disabled worker group, the turnover rate was differently influenced by the type of occupation, the length of working years, while multi-role stress and the average working years at the time of turnover for the worker group without disabilities. Fifth, as a result of verifying the hypothetical path model, it showed that the first model was somewhat proper and could predict the career success on both research participant groups. In the second model, the Chi-square, the degree of freedom (($x^2=64.950$, df=61, P=0.341), and the adjusted Goodness of Fit Index (AGFI) were .964, and the Comparative Fit Index (CFI) were .997, and the Root Mean Squared Residual (RMR) was respectively. .038. The model was best fitted and could predict the career success more highly because the goodness of fit index in the whole models was within the allowed range. In conclusion, the following research implications can be suggested. First, the occupational type of research participants was one of the most important variables to predict the career success for both research participant groups. It means that people with disabilities require human development services including education. They need to improve themselves in this knowledge-based society. Furthermore, for maintaining the career success, people with disabilities should be approached by considering the subjective career success aspects including wages and the promotion opportunities than the objective career success aspects.

  • PDF

A Study on the Construction Demand for Network of Metro Railroad in Busan-Ulsan-Gyeongnam Area - In the place of National Road No.7 - (부울경 광역도시철도망 구축 필요성에 관한 연구 - 국도 7호선 중심으로 -)

  • Choi, Yang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.771-778
    • /
    • 2011
  • Preliminary feasibility study on Busan metro line #1 in Yangsan line (Nopo-Bukjeong) depending on active volume of mass transportation between Yangsan city and Busan city was conducted. As the study concluded that it's valid, the necessity to establish the metro railroad network connecting to Busan, Ulsan and Gyeongnam Province is demanded to improve the transportation issues in Ungsang area vulnerable to metro service and to drive the balanced development between metropolitan cities. In addition, the volume of transportation depending on methods in target areas and road traffic assignment are surveyed to put a stress on the necessity to establish the metro railroad network. As the demand of transportation for alternative lines is predicted, the budget and benefits for construction for each alternative line set for the rough economic analysis depending on traffic volume for each method and traffic assignment results. The total project budget necessary for construction of proposal line #1 set as effective one among target three lines in this project is calculated in 794.32 billion won. Construction accounts for the most expensive in expenses for project and contingency allowances, purchases for vehicles and collateral expense are followed in orders. However, compensation for lands is not counted. In particular, according to economic analysis in proposal #1, ratio of benefit/cost (B/C) is 0.584, net present value (NPV) is -217.47 billion won, the internal rate of return (IRR) is analyzed in 0.604 %. At the current stage, it is not economically feasible, but the B/C is 0.737 in long-term upon construction of Yangsan line between Wolpheong and Yongdang which is proposal line #3. Therefore, when Busan metro basic plan is reorganized to aim the benefit of residents in Ungsang area vulnerable to the metro service, we think it must be necessary to establish the metro railroad network connecting to Busan-Yangsan-Ulsan which is proposal line #2 by extending the existing Sinjeong line and including this task line in high-ranked plan related to metro railroad.

An Analysis on the Characteristics of Each Phase's Risk Factors for High-Rise Development Project (초고층 개발사업 추진을 위한 단계별 리스크 요인의 특성 분석)

  • Chun, Young-Jun;Cho, Joo-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.103-115
    • /
    • 2016
  • The 106 buildings of 200 meters' height or greater were completed around the world in 2015 (CTBUH, The Council on Tall Buildings and Urban Habitat). They beat every previous year on record, including the previous record high of 99 completions in 2014. This brings the total number of 200-meter-plus buildings in the world to 1,040, exceeding 1,000 for the first time in history and marking a 392% increase from the year 2000, when only 265 existed. South Korea recorded three completions during 2015 - improving slightly over 2014, in which it had one. This study focused on the fact that high-rise building development project risks have not reduced in Korea in spite of numerous studies and measures. And it attempted to examine whether existing studies and measures have been presented on the basis of the accurate analysis of existing studies and measures and classify and analyze the characteristics of each phase' s risk factors in the hope that its results would be one reference point as to the measure to prevent high-rise building development project risks in the future. A high-rise building development project is the high risk project as compared with the low-rise project. Because a high-rise development project takes long and is very sensitive to the changing environment. Therefore, in order to succeed the project it becomes necessary to effectively manage the risk involved in the process of the high-rise building development project. The result of this study can be used as the guideline to make the risk management system for the high-rise development project.

A Study on Interactions of Competitive Promotions Between the New and Used Cars (신차와 중고차간 프로모션의 상호작용에 대한 연구)

  • Chang, Kwangpil
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2012
  • In a market where new and used cars are competing with each other, we would run the risk of obtaining biased estimates of cross elasticity between them if we focus on only new cars or on only used cars. Unfortunately, most of previous studies on the automobile industry have focused on only new car models without taking into account the effect of used cars' pricing policy on new cars' market shares and vice versa, resulting in inadequate prediction of reactive pricing in response to competitors' rebate or price discount. However, there are some exceptions. Purohit (1992) and Sullivan (1990) looked into both new and used car markets at the same time to examine the effect of new car model launching on the used car prices. But their studies have some limitations in that they employed the average used car prices reported in NADA Used Car Guide instead of actual transaction prices. Some of the conflicting results may be due to this problem in the data. Park (1998) recognized this problem and used the actual prices in his study. His work is notable in that he investigated the qualitative effect of new car model launching on the pricing policy of the used car in terms of reinforcement of brand equity. The current work also used the actual price like Park (1998) but the quantitative aspect of competitive price promotion between new and used cars of the same model was explored. In this study, I develop a model that assumes that the cross elasticity between new and used cars of the same model is higher than those amongst new cars and used cars of the different model. Specifically, I apply the nested logit model that assumes the car model choice at the first stage and the choice between new and used cars at the second stage. This proposed model is compared to the IIA (Independence of Irrelevant Alternatives) model that assumes that there is no decision hierarchy but that new and used cars of the different model are all substitutable at the first stage. The data for this study are drawn from Power Information Network (PIN), an affiliate of J.D. Power and Associates. PIN collects sales transaction data from a sample of dealerships in the major metropolitan areas in the U.S. These are retail transactions, i.e., sales or leases to final consumers, excluding fleet sales and including both new car and used car sales. Each observation in the PIN database contains the transaction date, the manufacturer, model year, make, model, trim and other car information, the transaction price, consumer rebates, the interest rate, term, amount financed (when the vehicle is financed or leased), etc. I used data for the compact cars sold during the period January 2009- June 2009. The new and used cars of the top nine selling models are included in the study: Mazda 3, Honda Civic, Chevrolet Cobalt, Toyota Corolla, Hyundai Elantra, Ford Focus, Volkswagen Jetta, Nissan Sentra, and Kia Spectra. These models in the study accounted for 87% of category unit sales. Empirical application of the nested logit model showed that the proposed model outperformed the IIA (Independence of Irrelevant Alternatives) model in both calibration and holdout samples. The other comparison model that assumes choice between new and used cars at the first stage and car model choice at the second stage turned out to be mis-specfied since the dissimilarity parameter (i.e., inclusive or categroy value parameter) was estimated to be greater than 1. Post hoc analysis based on estimated parameters was conducted employing the modified Lanczo's iterative method. This method is intuitively appealing. For example, suppose a new car offers a certain amount of rebate and gains market share at first. In response to this rebate, a used car of the same model keeps decreasing price until it regains the lost market share to maintain the status quo. The new car settle down to a lowered market share due to the used car's reaction. The method enables us to find the amount of price discount to main the status quo and equilibrium market shares of the new and used cars. In the first simulation, I used Jetta as a focal brand to see how its new and used cars set prices, rebates or APR interactively assuming that reactive cars respond to price promotion to maintain the status quo. The simulation results showed that the IIA model underestimates cross elasticities, resulting in suggesting less aggressive used car price discount in response to new cars' rebate than the proposed nested logit model. In the second simulation, I used Elantra to reconfirm the result for Jetta and came to the same conclusion. In the third simulation, I had Corolla offer $1,000 rebate to see what could be the best response for Elantra's new and used cars. Interestingly, Elantra's used car could maintain the status quo by offering lower price discount ($160) than the new car ($205). In the future research, we might want to explore the plausibility of the alternative nested logit model. For example, the NUB model that assumes choice between new and used cars at the first stage and brand choice at the second stage could be a possibility even though it was rejected in the current study because of mis-specification (A dissimilarity parameter turned out to be higher than 1). The NUB model may have been rejected due to true mis-specification or data structure transmitted from a typical car dealership. In a typical car dealership, both new and used cars of the same model are displayed. Because of this fact, the BNU model that assumes brand choice at the first stage and choice between new and used cars at the second stage may have been favored in the current study since customers first choose a dealership (brand) then choose between new and used cars given this market environment. However, suppose there are dealerships that carry both new and used cars of various models, then the NUB model might fit the data as well as the BNU model. Which model is a better description of the data is an empirical question. In addition, it would be interesting to test a probabilistic mixture model of the BNU and NUB on a new data set.

  • PDF