• Title/Summary/Keyword: (±

Search Result 3,793, Processing Time 0.028 seconds

DYNAMICS OF RELATIONS

  • Park, Jong Suh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 2002
  • Let X be a compact metric space and let f be a continuous relation on X. Let U be an attractor block for f and let A bean attractor determined by U. Then there exists a continuous function ${\lambda}^{-1}:X{\rightarrow}[0,1]$ such that ${\lambda}^{-1}(0)=A$, ${\lambda}^{-1}(1)=X-B(A,U)$, and $M({\lambda},f)(x)$ < ${\lambda}(x)$ for all $x{\in}B(A,U)-A$.

  • PDF

A Statistical Study Evaporation tn DAEGU Area (대구지방의 증발량에 대한 통계학적 연구)

  • 김영기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3160-3169
    • /
    • 1973
  • Rainfall, evaporation, and permeability of water are the most important factors in determining the demand of water. The Daegu area has only a meteorologi observatory and there is not sufficient data for adapting the advanced method for derivation of the estimated of evaporation in the Daegu area. However, by using available data, the writer devoted his great effort in deriving the most reasonable formula applicable to the Daegu area and it is adaptable for various purposes such as industry and estimation of groundwater etc. The data used in this study was the monthly amount of evaporation of the Daegu area for the past 13 years(1960 to 1970). A year can be divided into two groups by relative degrees of evaporation in this area: the first group (less evaporation) is January, February, March, October, November, and December, and the second (more evaporation) is April, May, June, July, August, and September. The amount of evaporation of the two groups were statistically treated by the theory of probability for derivation of estimated formula of evaporation. The formula derved is believed to fully consider. The characteristic hydrological environment of this area as the following shows: log(x+3)=0.8963+0.1125$\xi$..........(4, 5, 6, 7, 8, 9 month) log(x-0.7)=0.2051+0.3023$\xi$..........(1, 2, 3, 10, 11, 12 month) This study obtained the above formula of probability of the monthly evaporation of this area by using the relation: $F_(x)=\frac{1}{{\surd}{\pi}}\int\limits_{-\infty}^{\xi}e^{-\xi2}d{\xi}\;{\xi}=alog_{\alpha}({\frac{x_0+b'}{x_0+b})\;(-b<x<{\infty})$ $$log(x_0+b)=0.80961$ $$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}\;Sx=0.1125$$ $$b=\frac{1}{m}\sum\limits_{i-I}^{m}b_s=3.14$$ $$S_x=\sqrt{\frac{1}{N}\sum\limits_{i-I}^{N}\{log(x_i+b)\}^2-\{log(x_i+b)\}^2}=0.0791$$ (4, 5, 6, 7, 8, 9 month) This formula may be advantageously applied to estimation of evaporation in the Daegu area. Notation for general terms has been denoted by following: $W_(x)$: probability of occurance. $$W_(x)=\int_x^{\infty}f(x)dx$$ P : probability $$P=\frac{N!}{t!(N-t)}{F_i^{N-{\pi}}(1-F_i)^l$$ $$F_{\eta}:\; Thomas\;plot\;F_{\eta}=(1-\frac{n}{N+1})$$ $X_l\;X_i$: maximun, minimum value of total number of sample size(other notation for general terms was used as needed)

  • PDF

The Convolution Sum $\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(1, 14),(2, 7),(1, 7)

  • Alaca, Ayse;Alaca, Saban;Ntienjem, Ebenezer
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.377-389
    • /
    • 2019
  • We evaluate the convolution sum $W_{a,b}(n):=\sum_{al+bm=n}{\sigma}(l){\sigma}(m)$ for (a, b) = (1, 28),(4, 7),(2, 7) for all positive integers n. We use a modular form approach. We also re-evaluate the known sums $W_{1,14}(n)$ and $W_{1,7}(n)$ with our method. We then use these evaluations to determine the number of representations of n by the octonary quadratic form $x^2_1+x^2_2+x^2_3+x^2_4+7(x^2_5+x^2_6+x^2_7+x^2_8)$. Finally we express the modular forms ${\Delta}_{4,7}(z)$, ${\Delta}_{4,14,1}(z)$ and ${\Delta}_{4,14,2}(z)$ (given in [10, 14]) as linear combinations of eta quotients.

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.

THE IMAGES OF LOCALLY FINITE 𝓔-DERIVATIONS OF POLYNOMIAL ALGEBRAS

  • Lv, Lintong;Yan, Dan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.73-82
    • /
    • 2022
  • Let K be a field of characteristic zero. We first show that images of the linear derivations and the linear 𝓔-derivations of the polynomial algebra K[x] = K[x1, x2, …, xn] are ideals if the products of any power of eigenvalues of the matrices according to the linear derivations and the linear 𝓔-derivations are not unity. In addition, we prove that the images of D and 𝛿 are Mathieu-Zhao spaces of the polynomial algebra K[x] if D = ∑ni=1 (aixi + bi)∂i and 𝛿 = I - 𝜙, 𝜙(xi) = λixi + 𝜇i for ai, bi, λi, 𝜇i ∈ K for 1 ≤ i ≤ n. Finally, we prove that the image of an affine 𝓔-derivation of the polynomial algebra K[x1, x2] is a Mathieu-Zhao space of the polynomial algebra K[x1, x2]. Hence we give an affirmative answer to the LFED Conjecture for the affine 𝓔-derivations of the polynomial algebra K[x1, x2].