JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 15, No.1, June 2002

DYNAMICS OF RELATIONS

JONG SUH PARK

ABSTRACT. Let X be a compact metric space and let f be a continuous relation on X. Let U be an attractor block for f and let A be an attractor determined by U. Then there exists a continuous function $\lambda : X \to [0, 1]$ such that

$$\lambda^{-1}(0) = A, \ \lambda^{-1}(1) = X - B(A, U), \text{ and } M(\lambda, f)(x) < \lambda(x)$$

for all $x \in B(A, U) - A$.

1. IntroductionLet (X, d) be a compact metric space and let $f : X \to X$ be a continuous map. The following result is well known [4].

THEOREM. Let A be an attractor for f. Then there exists a continuous function $h : X \to [0, 1]$ such that

(1) $h^{-1}(0) = A$ and $h^{-1}(1) = X - B(A)$, (2) h(f(x)) < h(x) for all $x \in B(A) - A$,

where B(A) is a basin of A.

In this paper, we extend this result to the case of a continuous relation.

2. Continuous relations

In this paper, X is a compact metric space with a metric d.

DEFINITION 2.1. Let f be a relation on X whose domain is X and let $x \in X$.

(1) f is said to be upper semicontinuous at x if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $f(y) \subset B(f(x), \varepsilon)$.

supported by the Research Foundations of Chungnam National University, 2001.

Received by the editors on June 3, 2002.

²⁰⁰⁰ Mathematics Subject Classifications: 37B25, 54H20.

Key words and phrases: attractor, attractor block, continuous relation, chain.

JONG SUH PARK

(2) f is said to be *lower semicontinuous* at x if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $f(x) \subset B(f(y), \varepsilon)$.

(3) f is said to be *continuous* at x if f is both upper semicontinuous and lower semicontinuous at x.

Throughout this paper, f is a continuous relation on X such that f(x) is a closed subset of X for all $x \in X$.

For any continuous function $\varepsilon : X \to \mathbb{R}$, define $m(\varepsilon, f), M(\varepsilon, f) : X \to \mathbb{R}$ by

$$m(\varepsilon, f)(x) = \min \varepsilon(f(x)) \text{ and } M(\varepsilon, f)(x) = \max \varepsilon(f(x)).$$

THEOREM 2.1. $m(\varepsilon, f)$ and $M(\varepsilon, f)$ are continuous functions.

Proof. Let $x \in X$. Since f(x) is a compact subset of X, there is $z \in f(x)$ such that $\varepsilon(z) = m(\varepsilon, f)(x)$. For any $\eta > 0$ there exists $\nu > 0$ such that

$$d(z,y) < \nu$$
 implies $\varepsilon(y) < \varepsilon(z) + \eta = m(\varepsilon, f)(x) + \eta$.

Let $\alpha \in f(x)$. Since $m(\varepsilon, f)(x) - \eta < m(\varepsilon, f)(x) \le \varepsilon(\alpha)$, there is $\nu_{\alpha} > 0$ such that

 $d(\alpha, y) < \nu_{\alpha}$ implies $m(\varepsilon, f)(x) - \eta < \varepsilon(y)$.

 $\bigcup_{\alpha \in f(x)} B(\alpha, \nu_{\alpha}) \text{ is a neighborhood of } f(x). \text{ Since } f(x) \text{ is a compact} \\ \text{subset of } X, \text{ there exists } \zeta > 0 \text{ such that } B(f(x), \zeta) \subset \bigcup_{\alpha \in f(x)} B(\alpha, \nu_{\alpha}). \\ \text{Let } \xi = \min\{\nu, \zeta\}. \text{ There is } \delta > 0 \text{ such that } d(x, y) < \delta \text{ implies} \\ D(f(x)), f(y)) < \xi. \text{ Let } d(x, y) < \delta. \text{ Since } z \in f(x) \subset B(f(y), \xi), \\ \text{there is } b \in f(y) \text{ such that } d(z, b) < \xi \leq \nu. \text{ Thus } \varepsilon(b) < m(\varepsilon, f)(x) + \eta. \\ \text{For every } p \in f(y), \text{ since} \end{cases}$

$$f(y) \subset B(f(x),\xi) \subset B(f(x),\zeta) \subset \bigcup_{\alpha \in f(x)} B(\alpha,\nu_{\alpha}),$$

there is an $\alpha \in f(x)$ such that $d(\alpha, p) < \nu_{\alpha}$. We have $m(\varepsilon, f)(x) - \eta < \varepsilon(p)$. Thus

$$m(\varepsilon, f)(x) - \eta < m(\varepsilon, f)(y) \le \varepsilon(b) < m(\varepsilon, f)(x) + \eta.$$

Therefore $m(\varepsilon, f)$ is continuous at x.

By the similar method, $M(\varepsilon, f)$ is a continuous function.

DYNAMICS OF RELATIONS

THEOREM 2.2. f is a closed subset of $X \times X$.

Proof. Let $(x,y) \in X \times X - f$. Since f(x) is a compact subset of X, there exists $\varepsilon > 0$ such that $B(y,\varepsilon) \cap B(f(x),\varepsilon) = \emptyset$. Since f is continuous at x, there exists a $\delta > 0$ such that $d(x,z) < \delta$ implies $D(f(x), f(z)) < \varepsilon$. We claim that $B(x,\delta) \times B(y,\varepsilon) \cap f = \emptyset$. Suppose that $(u,v) \in B(x,\delta) \times B(y,\varepsilon) \cap f$. Since $d(x,u) < \delta$, we have $D(f(x), f(u)) < \varepsilon$. Since $v \in f(u) \subset B(f(x),\varepsilon)$ and $v \in B(y,\varepsilon)$, we have $B(y,\delta) \times B(f(x),\varepsilon) \neq \emptyset$. This is a contradiction. Thus $B(x,\varepsilon) \times B(y,\varepsilon) \cap f = \emptyset$. Hence f is a closed subset of $X \times X$. \Box

THEOREM 2.3. For any compact subset K of X, f(K) is a compact subset of X.

Proof. Let (y_n) be a sequence in f(K). There exists a sequence (x_n) in K such that $(x_n, y_n) \in f$. Let $x_n \to x \in K$ and $y_n \to y \in X$. Since $(x_n, y_n) \in f$, we have $(x, y) \in \overline{f} = f$. Thus $y \in f(x) \subset f(K)$. Therefore f(K) is a compact subset of X.

THEOREM 2.4. For any $A \subset K$, we have $f(\overline{A}) = f(A)$.

Proof. Let $y \in f(\overline{A})$. There exists $x \in \overline{A}$ such that $(x, y) \in f$. For any $\varepsilon > 0$ there is $\delta > 0$ such that $d(x, z) < \delta$ implies $D(f(x), f(z)) < \varepsilon$. Since $x \in \overline{A}$, we have $B(x, \delta) \cap A \neq \emptyset$. Let $z \in B(x, \delta) \cap A$. Since $d(x, z) < \delta$, we have $D(f(x), f(z)) < \varepsilon$. Since $y \in f(x) \subset B(f(z), \varepsilon)$, there exists $w \in f(z) \subset f(A)$ such that $d(y, w) < \varepsilon$. Thus we have $B(y, \varepsilon) \cap f(A) \neq \emptyset$. Therefore $y \in \overline{f(A)}$. Hence $f(\overline{A}) \subset \overline{f(A)}$.

Since $f(A) \subset f(\overline{A})$ and $f(\overline{A})$ is a closed subset of X, we have $\overline{f(A)} \subset f(\overline{A})$. Thus $f(\overline{A}) = \overline{f(A)}$.

THEOREM 2.5. Let g be a continuous relation on X such that g(x) is a closed set of X for all $x \in X$. Then $g \circ f$ is a continuous relation on X.

Proof. Let $x \in X$ and $\varepsilon > 0$. For every $y \in f(x)$ there is $\delta_y > 0$ such that

$$d(y,z) < \delta_y \text{ implies } D(g(y),g(z)) < \frac{\varepsilon}{2}.$$

 $\{B(y, \frac{\delta_y}{2} \mid y \in f(x)\}\$ is an open cover of f(x). Since f(x) is a compact set, there exist finitely many $y_1, \dots, y_n \in f(x)$ such that $f(x) \subset \bigcup_{i=1}^n B(y_i, \frac{\delta_{y_i}}{2})$. Let $\delta = \min\{\frac{\delta_{y_i}}{2} \mid i = 1, \dots, n\}$. Since f is continuous

JONG SUH PARK

at x, there exists $\eta > 0$ such that $d(x, w) < \eta$ implies $D(f(x), f(w)) < \delta$. Let $d(x, w) < \eta$. For every $u \in g \circ f(w)$ there exists $a \in X$ such that $(w, a) \in f$ and $(a, u) \in g$. Since $D(f(x), f(w)) < \delta$, we have $a \in f(w) \subset B(f(x), \delta)$. Thus there is $b \in f(x)$ such that $d(a, b) < \delta$. Since $b \in f(x) \subset \bigcup_{i=1}^{n} B(y_i, \frac{\delta_{y_i}}{2})$, there is an integer *i* such that $b \in B(y_i, \frac{\delta_{y_i}}{2})$. We have

$$d(y_i,a) \leq d(y_i,b) + d(b,a) < \frac{\delta_{y_i}}{2} + \delta \leq \frac{\delta_{y_i}}{2} + \frac{\delta_{y_i}}{2} = \delta_{y_i}.$$

Thus $D(g(y_i), g(a)) < \frac{\varepsilon}{2}$. Since $u \in g(a) \subset B(g(y_i), \frac{\varepsilon}{2})$, there is $c \in g(y_i)$ such that $d(u, c) < \frac{\varepsilon}{2}$. Since $y_i \in f(x)$, we have $c \in g \circ f(x)$. Thus $u \in B(g \circ f(x), \varepsilon)$ for all $u \in g \circ f(w)$. Therefore $g \circ f(w) \subset B(g \circ f(x), \varepsilon)$.

For every $v \in g \circ f(x)$ there is $a' \in X$ such that $(x,a') \in f$ and $(a',v) \in g$. Since $a' \in f(x) \subset \bigcup_{i=1}^{n} B(y_i, \frac{\delta y_i}{2})$, there exists an integer *i* such that $a' \in B(y_i, \frac{\delta y_i}{2})$. Since $d(y_i, a') < \frac{\delta y_i}{2}$, we have $D(g(y_i), g(a')) < \frac{\varepsilon}{2}$. Since $v \in g(a') \subset B(g(y_i), \frac{\varepsilon}{2})$, there exists $c' \in g(y_i)$ such that $d(v, c') < \frac{\varepsilon}{2}$. Since $D(f(x), f(w)) < \delta$, we have $a' \in f(x) \subset B(f(w), \delta)$. Thus there exists $b' \in f(w)$ such that $d(a', b') < \delta$. Then

$$d(y_i, b') \le d(y_i, a') + d(a', b') < \frac{\delta_{y_i}}{2} + \delta \le \frac{\delta_{y_i}}{2} + \frac{\delta_{y_i}}{2} = \delta_{y_i}$$

Thus we have $D(g(y_i), g(b')) < \frac{\varepsilon}{2}$. Since $c' \in g(y_i) \subset B(g(b'), \frac{\varepsilon}{2})$, there exists $p \in g(b')$ such that $d(c', p) < \frac{\varepsilon}{2}$. Then

$$d(v,p) \le d(v,c') + d(c',p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $p \in g \circ f(w)$, we have $v \in B(g \circ f(w), \varepsilon)$. Thus $g \circ f(x) \subset B(g \circ f(w), \varepsilon)$. Therefore we have $D(g \circ f(x), g \circ f(w)) < \varepsilon$. Hence $g \circ f$ is continuous at x.

COROLLARY 2.1. Let $n \ge 0$. f^n is a continuous relation on X such that $f^n(x)$ is a closed subset of X for all $x \in X$.

3. Attractors for continuous relations

DEFINITION 3.1. Let U be a nonempty open subset of X. U is called an *attractor block* for f if $\overline{f(U)} \subset U$. An attractor block determines the attractor A where A is defined as $A = \bigcap_{n\geq 0} \overline{f^n(U)}$. The *basin* of A relative to U is the open set defined by

 $\{x \in X | f^n(x) \subset U \text{ for some } n \ge 0\}$

and is denoted as B(A, U).

DEFINITION 3.2. Let $\varepsilon > 0$. An ε -chain for f is any finite nonempty sequence $\Psi = (x_0, x_1, \dots, x_n)$ of points of X with the property that $d(x_{i+1}, f(x_i)) < \varepsilon$ for all $0 \le i \le n - 1$.

A *p*-chain for f is any finite nonempty sequence $\Psi = ((x_0, y_0), \cdots, (x_n, y_n))$ of ordered pairs of points of X with the property that $x_{i+1} \in f(y_i)$ for all $0 \le i \le n-1$.

Let $\varepsilon > 0$. Then Ψ is said to be an ε -*p*-chain for f if $d(x_i, y_i) < \varepsilon$ for all $0 \le i \le n$.

LEMMA 3.1. For every $\varepsilon > 0$ there exists $\delta > 0$ with the property that if $((x_i, y_i))$ is a δ -p-chain for f then (x_i) is an ε - chain for f.

Proof. For every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $D(f(x), f(y)) < \varepsilon$. Since $d(x_i, y_i) < \delta$, we have $D(f(x_i), f(y_i)) < \varepsilon$. Since $x_{i+1} \in f(y_i) \subset B(f(x_i), \varepsilon)$, we have $d(x_{i+1}, f(x_i)) < \varepsilon$. Thus (x_i) is an ε - chain for f.

For any p-chain $\Psi = ((x_0, y_0), \cdots, (x_n, y_n))$ define

$$\Gamma(\Psi) = \sum_{i=0}^{n} d(x_i, y_i).$$

Let Y be a nonempty closed subset of X and let Z(x, Y, f) be the set of all p-chains for f that begin in Y and end at $x \in X$. Define $L(x, Y, f) = \inf\{\Gamma(\Psi) | \Psi \in Z(x, Y, f)\}.$

Let $x \in Y$. Since $((x, x)) \in Z(x, Y, f)$, we have L(x, Y, f) = 0.

LEMMA 3.2. If $(x, y) \in f$, then $L(y, Y, f) \leq L(x, Y, f)$.

Proof. Let $\Psi = ((x_0, y_0), \dots, (x_n, x)) \in Z(x, Y, f)$ with $x_0 \in Y$. Define $\Psi' = ((x_0, y_0), \dots, (x_n, x), (y, y))$. Then $\Psi' \in Z(x, Y, f)$ and

$$\Gamma(\Psi') = d(x_0, y_0) + \dots + d(x_n, x) + d(y, y)$$

= $d(x_0, y_0) + \dots + d(x_n, x)$
= $\Gamma(\Psi).$

Thus we have

$$L(y, Y, f) \leq \inf\{\Gamma(\Psi') | \Psi \in Z(x, Y, f)\}$$

= $\inf\{\Gamma(\Psi) | \Psi \in Z(x, Y, f)\}$
= $L(x, Y, f).$

LEMMA 3.3. The map $x \to L(x, Y, f)$ is continuous.

Proof. Let $x \in Y$. Then L(x, Y, f) = 0. For any $\varepsilon > 0$, $B(x, \varepsilon)$ is a neighborhood of x. For any $y \in B(x, \varepsilon)$, let $\Psi = ((x, y)) \in Z(y, Y, f)$. Then $L(y, Y, f) \leq \Gamma(\Psi) = d(x, y) < \varepsilon$. Thus L(, Y, f) is continuous at x.

Let $x \in X - Y$. For any h > 0, since $L(x, Y, f) < L(x, Y, f) + \frac{h}{2}$, there exists $\Psi \in Z(x, Y, f)$ such that $\Gamma(\Psi) > L(x, Y, f) + \frac{h}{2}$. Let $\Psi = ((x_0, y_0), \dots, (x_n, x))$. $B(x, \frac{h}{2})$ is a neighborhood of x. For any $y \in B(x, \frac{h}{2})$, let $\Psi' = ((x_0, y_0), \dots, (x_n, y)) \in Z(y, Y, f)$. Since

$$|\Gamma(\Psi) - \Gamma(\Psi')| = |d(x_n, x) - d(x_n, y)| \le d(x, y) < \frac{h}{2},$$

we have

$$\Gamma(\Psi') - \Gamma(\Psi) \le |\Gamma(\Psi) - \Gamma(\Psi')| < \frac{h}{2}$$

Thus

$$L(y, Y, f) \leq \Gamma(\Psi') < \Gamma(\Psi) + \frac{h}{2} < L(x, Y, f) + h.$$

Therefore L(, Y, f) is upper semicontinuous at x.

Suppose that L(,Y,f) is not lower semicontinuous at x. There exists $\beta > 0$ such that for every $\eta > 0$ there is $y \in B(x,\eta)$ such that $L(y,Y,f) < L(x,Y,f) - \beta$. For each i, there exists $z_i \in B(x,\frac{1}{i})$ such that $L(z_i,Y,f) < L(x,Y,f) - \beta$. There is $\Psi_i \in Z(z_i,Y,f)$ such that $\Gamma(\Psi_i) < L(x,Y,f) - \beta$. Let $\Psi_i = ((x_0^i, y_0^i), \cdots, (x_{n_i}^i, z_i))$. Define $\Psi'_i = ((x_0^i, y_0^i), \cdots, (x_{n_i}^i, x)) \in Z(x,Y,f)$. Since $z_i \to x$, there is i such that $d(z_i, x) < \frac{\beta}{2}$. Since

$$|\Gamma(\Psi_i) - \Gamma(\Psi'_i)| = |d(x^i_{n_i}, z_i) - d(x^i_{n_i}, x)| \le d(z_i, x) < \frac{\beta}{2},$$

we have

$$\Gamma(\Psi_i') - \Gamma(\Psi_i) \le |\Gamma(\Psi_i) - \Gamma(\Psi_i')| < \frac{\beta}{2}$$

Thus

$$L(x,Y,f) \leq \Gamma(\Psi'_i) < \Gamma(\Psi_i) + \frac{\beta}{2} < L(x,Y,f) - \frac{\beta}{2}$$

This is a contradiction. Thus L(, Y, f) is lower semicontinuous at x. Hence L(, Y, f) is continuous at x.

REMARK 3.1. Let $x \in A$. For every $k \ge 1$, since $x \in \overline{f^k(U)}$, we have $L'_k(x) = 0$.

REMARK 3.2. Let $\Psi = ((x_0, y_0), \dots, (x_n, y_n))$ be an $\varepsilon - p$ -chain for f^k with $x_0 \in \overline{f^k(U)}$. Then $y_0 \in B(x_0, \varepsilon) \subset B(\overline{f^k(U)}, \varepsilon) \subset$ $B(\overline{f(U)}, \varepsilon) \subset U$. Since $x_1 \in f^k(y_0) \subset f^k(U) \subset \overline{f^k(U)}$, we have $y_1 \in U$. By induction, we have $y_n \in U$.

LEMMA 3.4. If $x \in X - U$, then $L'_k(x) \ge \varepsilon$ for every k.

Proof. Let $\Psi = ((x_0, y_0), \dots, (x_n, x)) \in Z(x, \overline{f^k(U)}, f^k)$. By the above Remark, Ψ is not $\varepsilon - p$ -chain. Thus there is i such that $d(x_i, y_i) \ge \varepsilon$. We have $\Gamma(\Psi) \ge d(x_i, y_i) \ge \varepsilon$.

Thus $L'_k(x) = L(x, \overline{f^k(U)}, f^k) \ge \varepsilon.$

LEMMA 3.5. $(L'_k)^{-1}(0) = \overline{f^k(U)}$ for all k.

Proof. Since $L'_k = 0$ on $\overline{f^k(U)}$, we have $\overline{f^K(U)} \subset (L'_k)^{-1}(0)$. It suffices to show that $x \in X - \overline{f^k(U)}$ implies $x \in X - (L'_k)^{-1}(0)$. Let

$$\Psi = ((x_0, y_0), \cdots, (x_n, x)) \in Z(x, \overline{f^k(U)}).$$

If Ψ is not $\varepsilon - p$ -chain, then $\Gamma(\Psi) \geq \varepsilon$. Let Γ be an $\varepsilon - p$ -chain. Since

$$y_0 \in B(x_0, \varepsilon) \subset B(f^k(U), f^k) \subset U,$$

we have $x_1 \in f^k(y_0) \subset f^k(U) \subset \overline{f^k(U)}$. By induction, we have $x_n \in \overline{f^k(U)}$. Thus

$$L'_k(x) = L(x, \overline{f^k(U)}, f^k) \ge \min\{\varepsilon, d(x, \overline{f^k(U)})\} > 0.$$

For each $k \geq 1$, define $L''_k(x) = \frac{1}{k} \sum_{i=0}^{k-1} M(L'_k, f^i)(x)$. L''_k is a nonnegative continuous function.

Π

LEMMA 3.6. If $(x, y) \in f$, then $L''_{k}(y) \leq L''_{k}(x)$.

Proof. Let $(x,y) \in f$. Since $y \in f(x)$, we have

$$M(L'_{k}, f^{0})(y) = L'_{k}(y) \le M(L'_{k}, f)(x).$$

For $1 \leq i \leq k-2$, since $f^i(y) \subset f^{i+1}(x)$, we have $M(L'_k, f^i)(y) \leq M(L'_k, f^{i+1})(x)$. Since

$$M(L'_{k}, f^{k-1})(y) \le M(L'_{k}, f^{k})(x) \le L'_{k}(x) = M(L'_{k}, f^{0})(x),$$

we have

$$L_k''(y) = \frac{1}{k} \sum_{i=0}^{k-1} M(L_k', f^i)(y)$$

$$\leq \frac{1}{k} \sum_{i=0}^{k-1} M(L_k', f^i)(x) = L_k''(x).$$

For $k \ge 1$, define $L_k(x) = \min\{\frac{1}{\epsilon}L_k''(x), 1\}$.

REMARK 3.3.

(1) L_k is continuous and nonincreasing along f orbits.

(2) For every $x \in X$, $0 \le L_k(x) \le 1$.

(3) $L_k^{-1}(0) = \overline{f^k(U)}$.

Define $L(x) = \sum_{k=1}^{\infty} \frac{L_k(x)}{2^k}$ and $\lambda(x) = \sum_{i=0}^{\infty} \frac{M(L, f^i)(x)}{2^{i+1}}$.

Remark 3.4.

(1) Since the infinite sums in the above definition are uniformly convergent, L and λ are continuous.

(2) L is nonincreasing along the orbits of f.

(3) For all $x \in X$, $0 \leq L(x)$, $\lambda(x) \leq 1$.

Lemma 3.7. $\lambda^{-1}(0) = A$.

Proof. Let $x \in \lambda^{-1}(0)$. Then $\lambda(x) = 0$. So that L(x) = 0. Thus $L_k(x) = 0$ for all k. Therefore $x \in \bigcap_{k=1}^{\infty} \overline{f^k(U)} = A$. Let $x \in A$. Then $L'_k(x) = 0$ for all k. So that $L''_k(x) = 0$ for all k. Thus $L_k(x) = 0$ for all k and so L(x) = 0. Thus $\lambda(x) = 0$.

LEMMA 3.8. λ is nonincreasing along the orbits of f.

Proof. Let $(x, y) \in f$. For every $z \in f^{i+1}(x) = f(f^i(x))$, there exists $a \in f^i(x)$ such that $(a, z) \in f$. Then $L(z) \leq L(a) \leq M(L, f^i)(x)$. Since z is arbitrary, we have

$$M(L, f^{i+1})(x) \le M(L, f^i)(x).$$

Since $y \in f(x)$, we have $f^{i}(y) \subset f^{i+1}(x)$. Thus

$$M(L, f^{i})(y) \leq M(L, f^{i+1})(x) \leq M(L, f^{i})(x).$$

Therefore

$$\lambda(y) = \sum_{i=0}^{\infty} \frac{M(L, f^i)(y)}{2^{i+1}} \le \sum_{i=0}^{\infty} \frac{M(L, f^i)(x)}{2^{i+1}}$$

which completes the proof.

LEMMA 3.9. If $x \in B(A, U) - A$, then $\lambda(y) < \lambda(x)$ for all $y \in f(x)$.

Proof. Let $(x, y) \in f$. Since each term in the series defining λ is no larger at y than it is at x, it is enough to show that there is one of these terms that is actually smaller at y that at x. There are two cases. In the first case, $x \in f(U) - A$. Since the definition of A, there is a smallest integer k such that $x \notin \overline{f^k(U)}$. Then $k \ge 2$ and $L_k(x) > 0$. Since $x \in \overline{f^i(U)}, L_i(x) = 0$ for all k. Since $y \in f(x)$, we have

$$y \in f(\overline{f^{k-1}(U)}) \subset \overline{f^k(U)}.$$

Then $L_k(y) = 0$. Thus $L_k(y) < L_k(x)$. Hence $\lambda(y) < \lambda(x)$.

In the remaining case $x \in B(A, U) - f(U)$, there is a natural number i with the property that $f^{i}(x) \subset f(U) - A$. By the first case,

$$M(L, f^{i})(y) \le M(L, f^{i+1})(x) < M(L, f^{i})(x).$$

Hence $\lambda(y) < \lambda(x)$.

 \Box

LEMMA 3.10. $\lambda^{-1}(1) = X - B(A, U).$

Proof. If $x \in X - B(A, U)$, then $f^i(x) \not\subseteq U$ for all *i*. Thus there is $y_i \in f^i(x) - U$ for every *i*. Since $y_i \notin U$, we have $L'_k(y_i) \geq \varepsilon$ for all *k*. Then for every *k*,

$$L_{k}''(y_{i}) = \frac{1}{k} \sum_{j=0}^{k-1} M(L_{k}', f^{j})(y_{i}) \ge \varepsilon.$$

We have $L_k(y_i) = 1$ for all k. Thus $L(y_i) = 1$ and so $M(L, f^i)(x) = 1$. Therefore $\lambda(x) = 1$. Hence $X - B(A, U) \subset \lambda^{-1}(1)$.

Let $x \in \lambda^{-1}(1)$. Then $M(L, f^i)(x) = 1$ for all *i*. Thus there is $y_i \in f^i(x)$ such that

$$L(y_i) = M(L, f^i)(x) = 1.$$

So $L_k(y_i) = 1$ for all k. In particular, we have $L_1(y_i) = 1$. Suppose that $x \in \underline{B}(A, U)$. Then $f^i(x) \subset U$ for some i. Since $y_{i+1} \in f^{i+1}(x) \subset$ $f(U) \subset \overline{f(U)}$, we have $L_1(y_{i+1}) = 0$. This is a contradiction. Thus $x \notin B(A, U)$. Therefore $\lambda^{-1}(1) \subset X - B(A, U)$. Hence $\lambda^{-1}(1) =$ X - B(A, U).

From the above statements, we obtain the following theorem.

THEOREM 3.1. Let U be an attractor block for f and let A be an attractor determined by U. Then there exists a continuous function $\lambda: X \to [0, 1]$ such that

(1) $\lambda^{-1}(0) = A$, (2) $\lambda^{-1}(1) = X - B(A, U)$,

(3) $M(\lambda, f)(x) < \lambda(x)$ for all $x \in B(A, U) - A$.

REFERENCES

- [1] E. Akin, The General Topology of Dynamical Systmes, Graduate in Mathematics, vol. 71, Amer. Math. Soc., Providence, 1993.
- [2] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland, Amsterdam, 1994.
- [3] S. Choi, C. Chu and J. Park, Chain recurrent sets for flows on noncompact spaces, J. Dynam. Differential Equations 14 (2000), 597-611.
- [4] M. Hurley, Chain recurrence and attraction in noncompact spaces, Ergodic Theory Dynam. Systems 11 (1991,), 709-729.

- [5] _____, Noncompact chain recurrence and attraction, Proc. Amer. Math. Soc. 115 (1992), 1139–1148.
- [6] _____, Lyapunov functions and attractor in arbitrary metric spaces, Proc. Amer. Math. Soc. 126 (1998), 245-256.
- [7] _____, Weak attractors from Lyapunov functions, Topology and its Applications 109 (2001), 201-210.
- [8] R. McGehee, Attractors for closed relations on compact Hausdorff space, Indiana Univ. Math. J. 41 (1992), 1165–1209.

JONG SUH PARK DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: jspark@math.cnu.ac.kr