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DYNAMICS OF RELATIONS

JONG SUH PARK

ABSTRACT. Let X be a compact metric space and let f be a contin-
uous relation on X. Let U be an attractor block for f and let A be an

attractor determined by U. Then there exists a continuous function
A : X — [0,1] such that ‘

A"H0)=A, A71(1) = X — B(A,U), and M(), f)(z) < A(x)

for all z € B(A,U) — A.

1. IntroductionLet (X,d) be a compact metric space and let f
X — X be a continuous map. The following result is well known [4].:

THEOREM. Let A be an attractor for f. Then there exists a con-
tinuous function h : X — [0, 1] such that

(1) R~1(0) = A and h™1(1) = X — B(A),

(2) h(f(z)) < h(z) for all z € B(A) — A,
where B(A) is a basin of A.

In this paper, we extend this result to the case of a continuous
- relation.

2. Continuous relations
In this paper, X is a compact metric space with a metric d.

DEFINITION 2.1. Let f be a relation on X whose domain is X and
let z € X.

(1) f is said to be upper semicontinuous at x if for every ¢ > 0
there exists 6 > 0 such that d(z,y) < § implies f(y) C B(f(=),¢).
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(2) f is said to be lower semicontinuous at z if for every € > 0
there exists § > 0 such that d(z,y) < ¢ implies f(z) C B(f(y),¢).

(3) f is said to be continuous at z if f is both upper semicontinuous
and lower semicontinuous at z.

Throughout this paper, f is a continuous relation on X such that
f(z) is a closed subset of X for all z € X.

For any continuous function ¢ : X — R, define m(e, f), M (e, f) :
X - Rby

me, £)(z) = mine(f(z)) and M(s, f)(z) = maxe(f())-
THEOREM 2.1. m(e, f) and M(e, f) are continuous functions.

Proof. Let z € X. Since f(z) is a compact subset of X, there is
z € f(z) such that e(z) = m(e, f)(z). For any n > 0 there exists
v > 0 such that

d(z,y) < v implies £(y) < &(z) + n = m(e, f)(z) +n.
Let o € f(z). Since m(e, f)(z) —n < m(e, f)(z) < e(a), there is
Vo > 0 such that
d(a,y) < vo implies m(e, f)(z) —n < e(y).

Uaes(z) Ble,va) is a neighborhood of f(z). Since f(z) is a compact
subset of X, there exists { > 0 such that B(f(z), () C Uuef(r) Bl Va)-
Let ¢ = min{v,(}. There is § > 0 such that d(z,y) < ¢ implies

D(f(x)), f(y)) < ¢ Let d(z,y) < 4. Since z € f(z) C B(f(y),¢),
thereisb € f(y) such that d(z,b) < € < wv. Thuse(b) < m(e, f)(z)+n.
For every p € f(y), since

f(y) € B(f(z),6) C B(f(z),¢) C |J B(e,va),
a€ f(x)

there is an a € f(z) such that d(«,p) < vo. We have m(e, f)(z)—n <
¢(p). Thus

m(e, f)(z) —n <ml(e, f)(y) < e(b) <mfe, f)(z) +n.

Therefore m(e, f) is continuous at z.
By the similar method, M(e, f) is a continuous function. O
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THEOREM 2.2. f is a closed subset of X x X.

Proof. Let (z,y) € X x X — f. Since f(z) is a compact subset
of X, there exists € > 0 such that B(y,e) () B(f(z),e) = 0. Since
f is continuous at z, there exists a § > 0 such that d(z,z) < ¢
implies D(f(z), f(2)) < e. We claim that B(z,é) x B(y,e)(\f = 0.
Suppose that (u,v) € B(z,d8) x B(y,e)[)f. Since d(z,u) < §, we
have D(f(z), f(u)) < e. Since v € f(u) C B(f(z),€e) and v € B(y,¢),
we have B(y,d) x B(f(z),e) # 0. This is a contradiction. Thus
B(z,e) x B(y,e)()f =0. Hence f is a closed subset of X x X. O

THEOREM 2.3. For any compact subset K of X, f(K) is a compact
subset of X.

Proof. Let (yn) be a sequence in f(K). There exists a sequence
(zn) in K such that (z,,y,) € f. Let z, > 2 € K and y, >y € X.
Since (£n,Yn) € f, we have (z,y) € f = f. Thus y € f(z) C f(K).
Therefore f(K) is a compact subset of X. N d

THEOREM 2.4. For any A C K, we have f(A) = f(A).

Proof. Let y € f(A). There exists € A such that (z,y) € f. For
any € > 0 there is § > 0 such that d(z,2) < ¢ implies D(f(z), f(z)) <
€. Since z € A, we have B(z,8) (A # 0. Let z € B(z,8)[) A. Since
d(z,z) < 4, we have D(f(z), f(2)) < e. Since y € f(z) C B(f(2),¢),
there exists w € f(z) C f(A) such that d(y,w) < e. Thus we have

B(y,e) () f(A) # 0. Therefore y € f(A). Hence f(A) C f(A).

Since f(A) C f(A) and f(A) is a closed subset of X, we have

F(A) C £(A). Thus f(A) = F(A). =

THEOREM 2.5. Let g be a continuous relation on X such that g(z)

is a closed set of X for all x € X. Then go f is a continuous relation
on X.

Proof. Let + € X and € > 0. For every y € f(z) thereis §, > 0
such that . ’

d(y,z) < &, implies D(g(y), g(2)) < 5

{B(y, 67” | y € f(z)} is an open cover of f(z). Since f(z) is a compact
set, there exist finitely many yi,---,y, € f(z) such that f(z) C
ur, B(yi, %—‘—) Let § = min{%‘—ﬁ =1,---,n}. Since f is continuous
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at x, there exists n > 0 such that d(z,w) < n implies D(f(z), f(w)) <
§. Let d(z,w) < n. For every u € g o f(w) there exists a € X such
that (w,a) € f and (a,u) € g. Since D(f(z), f(w)) < §, we have
a € f(w) C B(f(z),d). Thus there is b € f(z) such that d(a,b) < é.

Since b € f(z) C U~ B(yi, 62 ), there is an integer ¢ such that

b € B(yi, —6%) We have

)
d(yi,a) < d(yi, b) + d(b,a) < 3

0 |=
N

Thus D(g(y:),g(a)) < §. Since u € g(a) C B(g(y:), 5), there is
c € g(y;) such that d(u,c) < 5. Since y; € f(z), we have c € go f(z).
Thus u € B(g o f(z), ) for all u € go f(w). Therefore g o f(w) C
B(go f(z),¢). |

For every v € go f(z) there is ' € X such that (z,a') € f
and (a’,v) € g. Since d' € f(z) C U, B(yi,ézﬁ), there exists
an integer 4 such that o' € B(y;,3%). Since d(y;,a') < ‘—S;—", we
have D(g(yi),g(a')) < 5. Since v € g(a') C B(g(y:), 5), there ex-
ists ¢ € g(y;) such that d(v,c’) < £. Since D(f(z), f(w)) < J, we
have ' € f(z) C B(f(w),d). Thus there exists b’ € f(w) such that
d(a’,b") < 6. Then

ml°’

Oyi

9 +

B = 8y

?

Sy
d(yi, ) < d(ys,a’) +d(a’,b) < 5+ <

Thus we have D(g(yi),g(b')) < 5. Since ¢’ € g(y;) C B(g(V'), §),
there exists p € g(b') such that d(c’,p) < 5. Then

d(v,p) < d(v, ) +d(,p) < 5 + 5 =e.

¢
2

Since p € g o f(w), we have v € B(g o f(w),e). Thus go f(z) C
B(g o f(w),e). Therefore we have D(g o f(z),g o f(w)) < e. Hence

go f is continuous at z. 0

COROLLARY 2.1. Letn > 0. f™ is a continuous relation on X such
that f"(z) is a closed subset of X for all z € X.

3. Attractors for continuous relations



DYNAMICS OF RELATIONS 79

DEFINITION 3.1. Let U be a nonempty open subset of X. U is

called an attractor block for f if f(U) C U. An attractor block deter-

mines the attractor A where A is defined as A = ()5, f*(U). The
basin of A relative to U is the open set defined by

{z € X|f"(z) C U for somen >0}
and is denoted as B(A,U).

DEFINITION 3.2. Let ¢ > 0. An e-chain for f is any finite nonempty
sequence ¥ = (zo, 1, - ,2Zn) of points of X with the property that
d(zit1, f(z;)) <eforall0<i<n-—1.

A p-chain for f is any finite nonempty sequence ¥ = ((zo,%0)," - ,
(Zn,yn)) of ordered pairs of points of X with the property that z,41 €
flyi)forall 0 <t <n-—1.

Let € > 0. Then ¥ is said to be an e-p-chain for f if d(z;,y;) < ¢
forall0<i<n.

LEMMA 3.1. For every € > 0 there exists § > 0 with the property
that if ((z,y:)) is a §-p-chain for f then (z;) is an e- chain for f.

Proof. For every ¢ > 0 there exists § > 0 such that d(z,y) < ¢ im-

plies D(f(z), f(y)) < €. Since d(z;,y;) < 8, we have D(f(x;), f(yi)) <
e. Since z;41 € f(yi) C B(f(z:),€), we have d(z;+1, f(z;)) < €. Thus

(z;) is an e- chain for f. O

For any p-chain ¥ = ((z0,¥0), " ,(Zn,Yn)) define
T(0) = d(zi,ys).
=0

Let Y be a nonempty closed subset of X and let Z(z,Y, f) be the
set of all p-chains for f that begin in Y and end at z € X. Define
L(z,Y, f) = mnf{T(¥)|¥ € Z(z,Y, f)}.
Let z € Y. Since ((z,2)) € Z(z,Y, f), we have L(z,Y, f) = 0.
LEMMA 3.2. If(:{,’,y) € f: then L(yaY7 f) S L(CU,Y, f)

Proof. Let ¥ = ((z0,¥%0)," " ,(zn,z)) € Z(z,Y, f) with zo € Y.
Define ¥’ = ((z0,Y0), " ,(zn, ), (y,y)). Then ¥’ € Z(2,Y, f) and

F(\IJ,) = d(xo,yo) +ot d(xfhx) + d(yay)
(z0,%0) + -+ + d(zn, 7)
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Thus we have

L(y,Y, f) < inf{D(¥)|¥ € Z(,Y, f)}
= inf{l'(¥)|¥ € Z(z,Y, f)}
= L(z,Y, f).

O
LEMMA 3.3. The map ¢ — L(z,Y, f) is continuous.

Proof. Let ¢ € Y. Then L(z,Y, f) = 0. For any ¢ > 0, B(z,¢) is a
neighborhood of z. For any y € B(z,¢), let ¥ = ((z,y)) € Z(y, Y, f).
Then L(y,Y, f) <T'(¥) =d(z,y) < e. Thus L(,Y, f) is continuous at
.

Let x € X — Y. For any h > 0, since L(z,Y, f) < L(z,Y, f) + %,
there exists ¥ € Z(z,Y, f) such that I'(¥) > L(z,Y, f) + % Let
¥ = ((z0,90), " ,(zn,z)). Bz, %) is a neighborhood of z. For any
Y€ Bz, b), let ' = ((z0,50), > (20,9)) € Z(3,Y, f). Since

D) = T(@)| = |d(zn, ) ~ d(za,v)] < d(z,9) < 5,
we have 5
D) - (V) < |T(®) - T(¥)] < .
Thus

L{y, Y, f) <T(¥') <T(¥) + & < L2, ¥, ) +h.

Therefore L( ,Y, f) is upper semicontinuous at x.

Suppose that L( ,Y, f) is not lower semicontinuous at z. There
exists B > 0 such that for every n > 0 there is y € B(z,7n) such
that L(y,Y, f) < L(z,Y, f) — 8. For each 1, there exists z; € B(z, %)
such that L(z;,Y, f) < L(z,Y, f) — 8. Thereis ¥; € Z(z,Y, f) such
that ['(¥;) < L(z,Y, f) — B. Let ¥; = ((z8,48)," - ,(xili,zi)). Define
Ul = ((xh,98), - ,(z%.,7)) € Z(2,Y,f). Since z; — =z, there is i
such that d(z;,z) < £. Since

)

ID(T;) = D(T)| = ld(an,, zi) — d(zy,,,2)| < d(zi,2) <

N
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we have
D(¥}) — D(¥:) < [T(¥:) - T(¥)] < 5.
Thus
N B
L(z,Y, f) ST(¥}) <T(¥) + 5 < L(z,Y, f) - .
This is a contradiction. Thus L(,Y, f) is lower semicontinuous at z.
Hence L(,Y, f) is continuous at z. a

REMARK 3.1. Let z € A. For every k > 1, since z € f¥(U), we
have Li(z) = 0.

REMARK 3.2. Let ¥ = ((z0,%0), " ,(Zn,yn)) be an € — p-chain
for f¥ with zo € f*¥({U). Then yo € B(zo,e) C B(f*({U),e) C
B(f(U),e) C U. Since 1 € f*(yo) C f¥(U) C f*({U), we have
y1 € U. By induction, we have y, € U.

LEMMA 3.4. Ifz € X — U, then L} (z) > ¢ for every k.

Proof. Let ¥ = ((z0,30),- - , (¢a,)) € Z(z, FF(U), f*). By the
above Remark, ¥ is not € — p-chain. Thus there is ¢ such that
d(z;,yi) > . We have I'(¥) > d(zi,y:) > ¢.

Thus Li(z) = L(z, f*(U), f*) > e. O
LEMMA 3.5. (L})~1(0) = f*(U) for all k.
Proof. Since L) = 0 on fk(U), we have fK(U) C (L}

suffices to show that 2 € X — f¥(U) implies z € X — (L} ) 1(0) Let

¥ = ((z0,%0), -, (zn, 7)) € Z(l'afk(U))'
If ¥ is not € — p-chain, then I'(7)
yo € B(zo,6) C B(f*(U), f*) C T,

we have z; € f¥(yo) C f¥(U) C f¥({U). By induction, we have
tn € f¥(U). Thus

Li(z) = L(z, f¥(U), f*) > min{e, d(z, f¥(U))} > 0.

> €. Let I’ be an € — p-chain. Since

a
For each k > 1, define L{(z) = % zk o M(Ly, fi)(z). LY is a

nonnegative continuous function.
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LEMMA 3.6. If (x,y) € f, then L{(y) < L{(z).
Proof. Let (z,y) € f. Since y € f(z), we have

M(Li, f)(y) = Li(y) < M(Li, f)(2).

For 1 < i < k — 2, since f(y) C f'*!(z), we have M(L}, f)(y) <
M(L}, f**')(z). Since

M(Li, f* ) (y) < M(LG, f*)(2) < Li(z) = M(L}, f°)(2),

we have

1 k—1 .
Li(y) = £ ) M(Ly, f)(y)
1=0
k-1
<337 ML, £)(e) = Li(a).

For k > 1, define Li(z) = min{1L}(z),1}.

REMARK 3.3.

(1) Ly is continuous and nonincreasing along f orbits.
(2) For every x € X, 0 < Li(z) < 1.

(3) L' (0) = f*(U).

Define L(z) = Y20 | 10 and A(z) = Y0, MEL@

REMARK 3.4.

(1) Since the infinite sums in the above definition are uniformly
convergent, L and \ are continuous.

(2) L is nonincreasing along the orbits of f.

(3) For allz € X, 0 < L(z), M=z) < 1.

LEMMA 3.7. A71(0) = A.
Proof. Let z € A7!(0). Then A(z) = 0. So that L(z) = 0. Thus
Li(z) = 0 for all k. Therefore z € (;—, f*(U) = A. Let € A. Then

Li(z) = 0 for all k. So that L{(x) = 0 for all k. Thus Li(z) = 0 for
all k and so L(z) = 0. Thus A\(z) = 0. O
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LEMMA 3.8. A\ is nonincreasing along the orbits of f.

Proof. Let (z,y) € f. Forevery z € f**'(z) = f(f*(z)), there ex-
ists a € fi(z) such that (a,2) € f. Then L(z) < L(a) < M(L, f*)(z).

Since z is arbitrary, we have
M(L, f*)(2) < M(L, f*)(=).
Since y € f(z), we have fi(y) C f”’i(w). Thus

M(L, f)(y) < M(L, f*)(2) < M(L, f)(2).

Therefore
_ N ME ) N ML ()
W) =) —oar <) T
=0 =0
which completes the proof. ‘ O

LEMMA 3.9. Ifz € B(A,U)— A, then A(y) < \(z) for all y € f(z).

Proof. Let (z,y) € f. Since each term in the series defining ) is
no larger at y than it is at z, it is enough to show that there is one
of these terms that is actually smaller at y that at z. There are two
cases. In the first case, z € f(U) — A. Since the definition of A,
there is a smallest integer k such that z ¢ f¥(U). Then k > 2 and
Li(z) > 0. Since z € f{(U),L;(z) = 0 for all k. Since y € f(z), we

have

y € f(f¥=1(U)) C f*U).

Then Li(y) = 0. Thus Li(y) < Li(z). Hence A(y) < A(z).
In the remaining case ¢ € B(A4,U)—f(U), there is a natural number
¢ with the property that f*(z) C f(U) — A. By the first case,

M(L, f)(y) < M(L, f**) () < M(L, f*)(a).

Hence A(y) < A(z). O
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LEMMA 3.10. A7}(1) = X — B(4,0).

Proof. If € X — B(A,U), then fi(z) € U for all i. Thus there is
yi € fi(z) — U for every i. Since y; ¢ U, we have L} (y;) > ¢ for all k.
Then for every k, ‘

x~
|
—

W(yi) = M(Ly, f7)(yi) > €

| =

I
=

J

We have Li(y;) = 1 for all k. Thus L(yl) =1 and so M(L, f*)(z) = 1.
Therefore A(z) = 1. Hence X — B(4,U) C A7(1). ;

Let z € A71(1). Then M(L,f)(z) = 1 for all <. Thus there is
yi € fi(z) such that '

L(yi) = M(L, f')(z) =

So Li(y;) = 1 for all k. In particular, we have Ly(y;) = 1. Suppose
that 2 € B(A,U). Then fi(z) C U for somei. Since y;+1 € fiT1(z) C
f(U) c f(U), we have L;(yiy1) = 0. This is a contradiction. Thus
z ¢ B(A,U). Therefore \71(1) C X — B(A,U). Hence \71(1) =
X — B(A,U). ‘ O

From the above statements we obtain the following theorem.

THEOREM 3.1. Let U be an attractor block for f and let A be an
attractor determined by U. Then there exists a continuous function
A: X — [0,1] such that

(1) \710) = A,

(2) A1) = X — B(A,U),

(3) M(X. f)(x) < A(z) for all z € B(A,U) — A.
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