DYNAMICS OF RELATIONS

Jong Suh Park

Abstract. Let X be a compact metric space and let f be a continuous relation on X. Let U be an attractor block for f and let A be an attractor determined by U. Then there exists a continuous function $\lambda: X \rightarrow[0,1]$ such that

$$
\lambda^{-1}(0)=A, \lambda^{-1}(1)=X-B(A, U), \text { and } M(\lambda, f)(x)<\lambda(x)
$$

for all $x \in B(A, U)-A$.

1. IntroductionLet (X, d) be a compact metric space and let f : $X \rightarrow X$ be a continuous map. The following result is well known [4].

Theorem. Let A be an attractor for f. Then there exists a continuous function $h: X \rightarrow[0,1]$ such that
(1) $h^{-1}(0)=A$ and $h^{-1}(1)=X-B(A)$,
(2) $h(f(x))<h(x)$ for all $x \in B(A)-A$, where $B(A)$ is a basin of A.

In this paper, we extend this result to the case of a continuous relation.

2. Continuous relations

In this paper, X is a compact metric space with a metric d.
Definition 2.1. Let f be a relation on X whose domain is X and let $x \in X$.
(1) f is said to be upper semicontinuous at x if for every $\varepsilon>0$ there exists $\delta>0$ such that $d(x, y)<\delta$ implies $f(y) \subset B(f(x), \varepsilon)$.

[^0](2) f is said to be lower semicontinuous at x if for every $\varepsilon>0$ there exists $\delta>0$ such that $d(x, y)<\delta$ implies $f(x) \subset B(f(y), \varepsilon)$.
(3) f is said to be continuous at x if f is both upper semicontinuous and lower semicontinuous at x.

Throughout this paper, f is a continuous relation on X such that $f(x)$ is a closed subset of X for all $x \in X$.

For any continuous function $\varepsilon: X \rightarrow \mathbb{R}$, define $m(\varepsilon, f), M(\varepsilon, f):$ $X \rightarrow \mathbb{R}$ by

$$
m(\varepsilon, f)(x)=\min \varepsilon(f(x)) \text { and } M(\varepsilon, f)(x)=\max \varepsilon(f(x))
$$

Theorem 2.1. $m(\varepsilon, f)$ and $M(\varepsilon, f)$ are continuous functions.
Proof. Let $x \in X$. Since $f(x)$ is a compact subset of X, there is $z \in f(x)$ such that $\varepsilon(z)=m(\varepsilon, f)(x)$. For any $\eta>0$ there exists $\nu>0$ such that

$$
d(z, y)<\nu \text { implies } \varepsilon(y)<\varepsilon(z)+\eta=m(\varepsilon, f)(x)+\eta
$$

Let $\alpha \in f(x)$. Since $m(\varepsilon, f)(x)-\eta<m(\varepsilon, f)(x) \leq \varepsilon(\alpha)$, there is $\nu_{\alpha}>0$ such that

$$
d(\alpha, y)<\nu_{\alpha} \text { implies } m(\varepsilon, f)(x)-\eta<\varepsilon(y)
$$

$\bigcup_{\alpha \in f(x)} B\left(\alpha, \nu_{\alpha}\right)$ is a neighborhood of $f(x)$. Since $f(x)$ is a compact subset of X, there exists $\zeta>0$ such that $B(f(x), \zeta) \subset \bigcup_{\alpha \in f(x)} B\left(\alpha, \nu_{\alpha}\right)$. Let $\xi=\min \{\nu, \zeta\}$. There is $\delta>0$ such that $d(x, y)<\delta$ implies $D(f(x)), f(y))<\xi$. Let $d(x, y)<\delta$. Since $z \in f(x) \subset B(f(y), \xi)$, there is $b \in f(y)$ such that $d(z, b)<\xi \leq \nu$. Thus $\varepsilon(b)<m(\varepsilon, f)(x)+\eta$. For every $p \in f(y)$, since

$$
f(y) \subset B(f(x), \xi) \subset B(f(x), \zeta) \subset \bigcup_{\alpha \in f(x)} B\left(\alpha, \nu_{\alpha}\right)
$$

there is an $\alpha \in f(x)$ such that $d(\alpha, p)<\nu_{\alpha}$. We have $m(\varepsilon, f)(x)-\eta<$ $\varepsilon(p)$. Thus

$$
m(\varepsilon, f)(x)-\eta<m(\varepsilon, f)(y) \leq \varepsilon(b)<m(\varepsilon, f)(x)+\eta
$$

Therefore $m(\varepsilon, f)$ is continuous at x.
By the similar method, $M(\varepsilon, f)$ is a continuous function.

Theorem 2.2. f is a closed subset of $X \times X$.
Proof. Let $(x, y) \in X \times X-f$. Since $f(x)$ is a compact subset of X, there exists $\varepsilon>0$ such that $B(y, \varepsilon) \bigcap B(f(x), \varepsilon)=\emptyset$. Since f is continuous at x, there exists a $\delta>0$ such that $d(x, z)<\delta$ implies $D(f(x), f(z))<\varepsilon$. We claim that $B(x, \delta) \times B(y, \varepsilon) \bigcap f=\emptyset$. Suppose that $(u, v) \in B(x, \delta) \times B(y, \varepsilon) \bigcap f$. Since $d(x, u)<\delta$, we have $D(f(x), f(u))<\varepsilon$. Since $v \in f(u) \subset B(f(x), \varepsilon)$ and $v \in B(y, \varepsilon)$, we have $B(y, \delta) \times B(f(x), \varepsilon) \neq \emptyset$. This is a contradiction. Thus $B(x, \varepsilon) \times B(y, \varepsilon) \bigcap f=\emptyset$. Hence f is a closed subset of $X \times X$.

Theorem 2.3. For any compact subset K of $X, f(K)$ is a compact subset of X.

Proof. Let $\left(y_{n}\right)$ be a sequence in $f(K)$. There exists a sequence $\left(x_{n}\right)$ in K such that $\left(x_{n}, y_{n}\right) \in f$. Let $x_{n} \rightarrow x \in K$ and $y_{n} \rightarrow y \in X$. Since $\left(x_{n}, y_{n}\right) \in f$, we have $(x, y) \in \bar{f}=f$. Thus $y \in f(x) \subset f(K)$. Therefore $f(K)$ is a compact subset of X.

Theorem 2.4. For any $A \subset K$, we have $f(\bar{A})=\overline{f(A)}$.
Proof. Let $y \in f(\bar{A})$. There exists $x \in \bar{A}$ such that $(x, y) \in f$. For any $\varepsilon>0$ there is $\delta>0$ such that $d(x, z)<\delta$ implies $D(f(x), f(z))<$ ε. Since $x \in \bar{A}$, we have $B(x, \delta) \bigcap A \neq \emptyset$. Let $z \in B(x, \delta) \bigcap A$. Since $d(x, z)<\delta$, we have $D(f(x), f(z))<\varepsilon$. Since $y \in f(x) \subset B(f(z), \varepsilon)$, there exists $w \in f(z) \subset f(A)$ such that $d(y, w)<\varepsilon$. Thus we have $B(y, \varepsilon) \cap f(A) \neq \emptyset$. Therefore $y \in \overline{f(A)}$. Hence $f(\bar{A}) \subset \overline{f(A)}$.

Since $f(A) \subset f(\bar{A})$ and $f(\bar{A})$ is a closed subset of X, we have $\overline{f(A)} \subset f(\bar{A})$. Thus $f(\bar{A})=\overline{f(A)}$.

TheOrem 2.5. Let g be a continuous relation on X such that $g(x)$ is a closed set of X for all $x \in X$. Then $g \circ f$ is a continuous relation on X.

Proof. Let $x \in X$ and $\varepsilon>0$. For every $y \in f(x)$ there is $\delta_{y}>0$ such that

$$
d(y, z)<\delta_{y} \text { implies } D(g(y), g(z))<\frac{\varepsilon}{2}
$$

$\left\{B\left(y, \left.\frac{\delta_{y}}{2} \right\rvert\, y \in f(x)\right\}\right.$ is an open cover of $f(x)$. Since $f(x)$ is a compact set, there exist finitely many $y_{1}, \cdots, y_{n} \in f(x)$ such that $f(x) \subset$ $\cup_{i=1}^{n} B\left(y_{i}, \frac{\delta_{y_{i}}}{2}\right)$. Let $\delta=\min \left\{\left.\frac{\delta_{y_{i}}}{2} \right\rvert\, i=1, \cdots, n\right\}$. Since f is continuous
at x, there exists $\eta>0$ such that $d(x, w)<\eta$ implies $D(f(x), f(w))<$ δ. Let $d(x, w)<\eta$. For every $u \in g \circ f(w)$ there exists $a \in X$ such that $(w, a) \in f$ and $(a, u) \in g$. Since $D(f(x), f(w))<\delta$, we have $a \in f(w) \subset B(f(x), \delta)$. Thus there is $b \in f(x)$ such that $d(a, b)<\delta$. Since $b \in f(x) \subset \bigcup_{i=1}^{n} B\left(y_{i}, \frac{\delta_{y_{i}}}{2}\right)$, there is an integer i such that $b \in B\left(y_{i}, \frac{\delta_{y_{i}}}{2}\right)$. We have

$$
d\left(y_{i}, a\right) \leq d\left(y_{i}, b\right)+d(b, a)<\frac{\delta_{y_{i}}}{2}+\delta \leq \frac{\delta_{y_{i}}}{2}+\frac{\delta_{y_{i}}}{2}=\delta_{y_{i}}
$$

Thus $D\left(g\left(y_{i}\right), g(a)\right)<\frac{\varepsilon}{2}$. Since $u \in g(a) \subset B\left(g\left(y_{i}\right), \frac{\varepsilon}{2}\right)$, there is $c \in g\left(y_{i}\right)$ such that $d(u, c)<\frac{\varepsilon}{2}$. Since $y_{i} \in f(x)$, we have $c \in g \circ f(x)$. Thus $u \in B(g \circ f(x), \varepsilon)$ for all $u \in g \circ f(w)$. Therefore $g \circ f(w) \subset$ $B(g \circ f(x), \varepsilon)$.

For every $v \in g \circ f(x)$ there is $a^{\prime} \in X$ such that $\left(x, a^{\prime}\right) \in f$ and $\left(a^{\prime}, v\right) \in g$. Since $a^{\prime} \in f(x) \subset \bigcup_{i=1}^{n} B\left(y_{i}, \frac{\delta_{y_{i}}}{2}\right)$, there exists an integer i such that $a^{\prime} \in B\left(y_{i}, \frac{\delta_{y_{i}}}{2}\right)$. Since $d\left(y_{i}, a^{\prime}\right)<\frac{\delta_{y_{i}}}{2}$, we have $D\left(g\left(y_{i}\right), g\left(a^{\prime}\right)\right)<\frac{\varepsilon}{2}$. Since $v \in g\left(a^{\prime}\right) \subset B\left(g\left(y_{i}\right), \frac{\varepsilon}{2}\right)$, there exists $c^{\prime} \in g\left(y_{i}\right)$ such that $d\left(v, c^{\prime}\right)<\frac{\varepsilon}{2}$. Since $D(f(x), f(w))<\delta$, we have $a^{\prime} \in f(x) \subset B(f(w), \delta)$. Thus there exists $b^{\prime} \in f(w)$ such that $d\left(a^{\prime}, b^{\prime}\right)<\delta$. Then

$$
d\left(y_{i}, b^{\prime}\right) \leq d\left(y_{i}, a^{\prime}\right)+d\left(a^{\prime}, b^{\prime}\right)<\frac{\delta_{y_{i}}}{2}+\delta \leq \frac{\delta_{y_{i}}}{2}+\frac{\delta_{y_{i}}}{2}=\delta_{y_{i}} .
$$

Thus we have $D\left(g\left(y_{i}\right), g\left(b^{\prime}\right)\right)<\frac{\varepsilon}{2}$. Since $c^{\prime} \in g\left(y_{i}\right) \subset B\left(g\left(b^{\prime}\right), \frac{\varepsilon}{2}\right)$, there exists $p \in g\left(b^{\prime}\right)$ such that $d\left(c^{\prime}, p\right)<\frac{\varepsilon}{2}$. Then

$$
d(v, p) \leq d\left(v, c^{\prime}\right)+d\left(c^{\prime}, p\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Since $p \in g \circ f(w)$, we have $v \in B(g \circ f(w), \varepsilon)$. Thus $g \circ f(x) \subset$ $B(g \circ f(w), \varepsilon)$. Therefore we have $D(g \circ f(x), g \circ f(w))<\varepsilon$. Hence $g \circ f$ is continuous at x.

Corollary 2.1. Let $n \geq 0 . f^{n}$ is a continuous relation on X such that $f^{n}(x)$ is a closed subset of X for all $x \in X$.
3. Attractors for continuous relations

DEFINITION 3.1. Let U be a nonempty open subset of $X . U$ is called an attractor block for f if $\overline{f(U)} \subset U$. An attractor block determines the attractor A where A is defined as $A=\bigcap_{n \geq 0} \overline{f^{n}(U)}$. The basin of A relative to U is the open set defined by

$$
\left\{x \in X \mid f^{n}(x) \subset U \text { for some } n \geq 0\right\}
$$

and is denoted as $B(A, U)$.
DEFINITION 3.2. Let $\varepsilon>0$. An ε-chain for f is any finite nonempty sequence $\Psi=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ of points of X with the property that $d\left(x_{i+1}, f\left(x_{i}\right)\right)<\varepsilon$ for all $0 \leq i \leq n-1$.

A p-chain for f is any finite nonempty sequence $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots\right.$, $\left.\left(x_{n}, y_{n}\right)\right)$ of ordered pairs of points of X with the property that $x_{i+1} \in$ $f\left(y_{i}\right)$ for all $0 \leq i \leq n-1$.

Let $\varepsilon>0$. Then Ψ is said to be an ε-p-chain for f if $d\left(x_{i}, y_{i}\right)<\varepsilon$ for all $0 \leq i \leq n$.

Lemma 3.1. For every $\varepsilon>0$ there exists $\delta>0$ with the property that if $\left(\left(x_{i}, y_{i}\right)\right)$ is a δ-p-chain for f then $\left(x_{i}\right)$ is an ε - chain for f.

Proof. For every $\varepsilon>0$ there exists $\delta>0$ such that $d(x, y)<\delta$ implies $D(f(x), f(y))<\varepsilon$. Since $d\left(x_{i}, y_{i}\right)<\delta$, we have $D\left(f\left(x_{i}\right), f\left(y_{i}\right)\right)<$ ε. Since $x_{i+1} \in f\left(y_{i}\right) \subset B\left(f\left(x_{i}\right), \varepsilon\right)$, we have $d\left(x_{i+1}, f\left(x_{i}\right)\right)<\varepsilon$. Thus $\left(x_{i}\right)$ is an ε - chain for f.

For any p-chain $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, y_{n}\right)\right)$ define

$$
\Gamma(\Psi)=\sum_{i=0}^{n} d\left(x_{i}, y_{i}\right)
$$

Let Y be a nonempty closed subset of X and let $Z(x, Y, f)$ be the set of all p-chains for f that begin in Y and end at $x \in X$. Define $L(x, Y, f)=\inf \{\Gamma(\Psi) \mid \Psi \in Z(x, Y, f)\}$.

Let $x \in Y$. Since $((x, x)) \in Z(x, Y, f)$, we have $L(x, Y, f)=0$.
Lemma 3.2. If $(x, y) \in f$, then $L(y, Y, f) \leq L(x, Y, f)$.
Proof. Let $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, x\right)\right) \in Z(x, Y, f)$ with $x_{0} \in Y$. Define $\Psi^{\prime}=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, x\right),(y, y)\right)$. Then $\Psi^{\prime} \in Z(x, Y, f)$ and

$$
\begin{aligned}
\Gamma\left(\Psi^{\prime}\right) & =d\left(x_{0}, y_{0}\right)+\cdots+d\left(x_{n}, x\right)+d(y, y) \\
& =d\left(x_{0}, y_{0}\right)+\cdots+d\left(x_{n}, x\right) \\
& =\Gamma(\Psi)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
L(y, Y, f) & \leq \inf \left\{\Gamma\left(\Psi^{\prime}\right) \mid \Psi \in Z(x, Y, f)\right\} \\
& =\inf \{\Gamma(\Psi) \mid \Psi \in Z(x, Y, f)\} \\
& =L(x, Y, f)
\end{aligned}
$$

Lemma 3.3. The map $x \rightarrow L(x, Y, f)$ is continuous.
Proof. Let $x \in Y$. Then $L(x, Y, f)=0$. For any $\varepsilon>0, B(x, \varepsilon)$ is a neighborhood of x. For any $y \in B(x, \varepsilon)$, let $\Psi=((x, y)) \in Z(y, Y, f)$. Then $L(y, Y, f) \leq \Gamma(\Psi)=d(x, y)<\varepsilon$. Thus $L(, Y, f)$ is continuous at x.

Let $x \in X-Y$. For any $h>0$, since $L(x, Y, f)<L(x, Y, f)+\frac{h}{2}$, there exists $\Psi \in Z(x, Y, f)$ such that $\Gamma(\Psi)>L(x, Y, f)+\frac{h}{2}$. Let $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, x\right)\right) . B\left(x, \frac{h}{2}\right)$ is a neighborhood of x. For any $y \in B\left(x, \frac{h}{2}\right)$, let $\Psi^{\prime}=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, y\right)\right) \in Z(y, Y, f)$. Since

$$
\left|\Gamma(\Psi)-\Gamma\left(\Psi^{\prime}\right)\right|=\left|d\left(x_{n}, x\right)-d\left(x_{n}, y\right)\right| \leq d(x, y)<\frac{h}{2}
$$

we have

$$
\Gamma\left(\Psi^{\prime}\right)-\Gamma(\Psi) \leq\left|\Gamma(\Psi)-\Gamma\left(\Psi^{\prime}\right)\right|<\frac{h}{2}
$$

Thus

$$
L(y, Y, f) \leq \Gamma\left(\Psi^{\prime}\right)<\Gamma(\Psi)+\frac{h}{2}<L(x, Y, f)+h
$$

Therefore $L(, Y, f)$ is upper semicontinuous at x.
Suppose that $L(, Y, f)$ is not lower semicontinuous at x. There exists $\beta>0$ such that for every $\eta>0$ there is $y \in B(x, \eta)$ such that $L(y, Y, f)<L(x, Y, f)-\beta$. For each i, there exists $z_{i} \in B\left(x, \frac{1}{i}\right)$ such that $L\left(z_{i}, Y, f\right)<L(x, Y, f)-\beta$. There is $\Psi_{i} \in Z\left(z_{i}, Y, f\right)$ such that $\Gamma\left(\Psi_{i}\right)<L(x, Y, f)-\beta$. Let $\Psi_{i}=\left(\left(x_{0}^{i}, y_{0}^{i}\right), \cdots,\left(x_{n_{i}}^{i}, z_{i}\right)\right)$. Define $\Psi_{i}^{\prime}=\left(\left(x_{0}^{i}, y_{0}^{i}\right), \cdots,\left(x_{n_{i}}^{i}, x\right)\right) \in Z(x, Y, f)$. Since $z_{i} \rightarrow x$, there is i such that $d\left(z_{i}, x\right)<\frac{\beta}{2}$. Since

$$
\left|\Gamma\left(\Psi_{i}\right)-\Gamma\left(\Psi_{i}^{\prime}\right)\right|=\left|d\left(x_{n_{i}}^{i}, z_{i}\right)-d\left(x_{n_{i}}^{i}, x\right)\right| \leq d\left(z_{i}, x\right)<\frac{\beta}{2}
$$

we have

$$
\Gamma\left(\Psi_{i}^{\prime}\right)-\Gamma\left(\Psi_{i}\right) \leq\left|\Gamma\left(\Psi_{i}\right)-\Gamma\left(\Psi_{i}^{\prime}\right)\right|<\frac{\beta}{2} .
$$

Thus

$$
L(x, Y, f) \leq \Gamma\left(\Psi_{i}^{\prime}\right)<\Gamma\left(\Psi_{i}\right)+\frac{\beta}{2}<L(x, Y, f)-\frac{\beta}{2} .
$$

This is a contradiction. Thus $L(, Y, f)$ is lower semicontinuous at x. Hence $L(, Y, f)$ is continuous at x.

Remark 3.1. Let $x \in A$. For every $k \geq 1$, since $x \in \overline{f^{k}(U)}$, we have $L_{k}^{\prime}(x)=0$.

Remark 3.2. Let $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, y_{n}\right)\right)$ be an $\varepsilon-p$-chain for f^{k} with $x_{0} \in \overline{f^{k}(U)}$. Then $y_{0} \in B\left(x_{0}, \varepsilon\right) \subset B\left(\overline{f^{k}(U)}, \varepsilon\right) \subset$ $B(\overline{f(U)}, \varepsilon) \subset U$. Since $x_{1} \in f^{k}\left(y_{0}\right) \subset f^{k}(U) \subset \overline{f^{k}(U)}$, we have $y_{1} \in U$. By induction, we have $y_{n} \in U$.

Lemma 3.4. If $x \in X-U$, then $L_{k}^{\prime}(x) \geq \varepsilon$ for every k.
Proof. Let $\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, x\right)\right) \in Z\left(x, \overline{f^{k}(U)}, f^{k}\right)$. By the above Remark, Ψ is not ε-p-chain. Thus there is i such that $d\left(x_{i}, y_{i}\right) \geq \varepsilon$. We have $\Gamma(\Psi) \geq d\left(x_{i}, y_{i}\right) \geq \varepsilon$.

Thus $L_{k}^{\prime}(x)=L\left(x, \overline{f^{k}(U)}, f^{k}\right) \geq \varepsilon$.
Lemma 3.5. $\left(L_{k}^{\prime}\right)^{-1}(0)=\overline{f^{k}(U)}$ for all k.
Proof. Since $L_{k}^{\prime}=0$ on $\overline{f^{k}(U)}$, we have $\overline{f^{K}(U)} \subset\left(L_{k}^{\prime}\right)^{-1}(0)$. It suffices to show that $x \in X-\overline{f^{k}(U)}$ implies $x \in X-\left(L_{k}^{\prime}\right)^{-1}(0)$. Let

$$
\Psi=\left(\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, x\right)\right) \in Z\left(x, \overline{f^{k}(U)}\right) .
$$

If Ψ is not $\varepsilon-p$-chain, then $\Gamma(\Psi) \geq \varepsilon$. Let Γ be an $\varepsilon-p$-chain. Since

$$
y_{0} \in B\left(x_{0}, \varepsilon\right) \subset B\left(\overline{f^{k}(U)}, f^{k}\right) \subset U,
$$

we have $x_{1} \in f^{k}\left(y_{0}\right) \subset f^{k}(U) \subset \overline{f^{k}(U)}$. By induction, we have $x_{n} \in \overline{f^{k}(U)}$. Thus

$$
L_{k}^{\prime}(x)=L\left(x, \overline{f^{k}(U)}, f^{k}\right) \geq \min \left\{\varepsilon, d\left(x, \overline{f^{k}(U)}\right)\right\}>0 .
$$

For each $k \geq 1$, define $L_{k}^{\prime \prime}(x)=\frac{1}{k} \sum_{i=0}^{k-1} M\left(L_{k}^{\prime}, f^{i}\right)(x) . \quad L_{k}^{\prime \prime}$ is a nonnegative continuous function.

Lemma 3.6. If $(x, y) \in f$, then $L_{k}^{\prime \prime}(y) \leq L_{k}^{\prime \prime}(x)$.
Proof. Let $(x, y) \in f$. Since $y \in f(x)$, we have

$$
M\left(L_{k}^{\prime}, f^{0}\right)(y)=L_{k}^{\prime}(y) \leq M\left(L_{k}^{\prime}, f\right)(x) .
$$

For $1 \leq i \leq k-2$, since $f^{i}(y) \subset f^{i+1}(x)$, we have $M\left(L_{k}^{\prime}, f^{i}\right)(y) \leq$ $M\left(L_{k}^{\prime}, f^{i+1}\right)(x)$. Since

$$
M\left(L_{k}^{\prime}, f^{k-1}\right)(y) \leq M\left(L_{k}^{\prime}, f^{k}\right)(x) \leq L_{k}^{\prime}(x)=M\left(L_{k}^{\prime}, f^{0}\right)(x),
$$

we have

$$
\begin{aligned}
L_{k}^{\prime \prime}(y) & =\frac{1}{k} \sum_{i=0}^{k-1} M\left(L_{k}^{\prime}, f^{i}\right)(y) \\
& \leq \frac{1}{k} \sum_{i=0}^{k-1} M\left(L_{k}^{\prime}, f^{i}\right)(x)=L_{k}^{\prime \prime}(x) .
\end{aligned}
$$

For $k \geq 1$, define $L_{k}(x)=\min \left\{\frac{1}{\varepsilon} L_{k}^{\prime \prime}(x), 1\right\}$.
Remark 3.3.
(1) L_{k} is continuous and nonincreasing along f orbits.
(2) For every $x \in X, 0 \leq L_{k}(x) \leq 1$.
(3) $L_{k}^{-1}(0)=\overline{f^{k}(U)}$.

Define $L(x)=\sum_{k=1}^{\infty} \frac{L_{k}(x)}{2^{k}}$ and $\lambda(x)=\sum_{i=0}^{\infty} \frac{M\left(L, f^{i}\right)(x)}{2^{i+1}}$.
Remark 3.4.
(1) Since the infinite sums in the above definition are uniformly convergent, L and λ are continuous.
(2) L is nonincreasing along the orbits of f.
(3) For all $x \in X, 0 \leq L(x), \lambda(x) \leq 1$.

Lemma 3.7. $\lambda^{-1}(0)=A$.
Proof. Let $x \in \lambda^{-1}(0)$. Then $\lambda(x)=0$. So that $L(x)=0$. Thus $L_{k}(x)=0$ for all k. Therefore $x \in \bigcap_{k=1}^{\infty} \overline{f^{k}(U)}=A$. Let $x \in A$. Then $L_{k}^{\prime}(x)=0$ for all k. So that $L_{k}^{\prime \prime}(x)=0$ for all k. Thus $L_{k}(x)=0$ for all k and so $L(x)=0$. Thus $\lambda(x)=0$.

LEmma 3.8. λ is nonincreasing along the orbits of f.
Proof. Let $(x, y) \in f$. For every $z \in f^{i+1}(x)=f\left(f^{i}(x)\right)$, there exists $a \in f^{i}(x)$ such that $(a, z) \in f$. Then $L(z) \leq L(a) \leq M\left(L, f^{i}\right)(x)$. Since z is arbitrary, we have

$$
M\left(L, f^{i+1}\right)(x) \leq M\left(L, f^{i}\right)(x)
$$

Since $y \in f(x)$, we have $f^{i}(y) \subset f^{i+1}(x)$. Thus

$$
M\left(L, f^{i}\right)(y) \leq M\left(L, f^{i+1}\right)(x) \leq M\left(L, f^{i}\right)(x)
$$

Therefore

$$
\lambda(y)=\sum_{i=0}^{\infty} \frac{M\left(L, f^{i}\right)(y)}{2^{i+1}} \leq \sum_{i=0}^{\infty} \frac{M\left(L, f^{i}\right)(x)}{2^{i+1}}
$$

which completes the proof.
Lemma 3.9. If $x \in B(A, U)-A$, then $\lambda(y)<\lambda(x)$ for all $y \in f(x)$.
Proof. Let $(x, y) \in f$. Since each term in the series defining λ is no larger at y than it is at x, it is enough to show that there is one of these terms that is actually smaller at y that at x. There are two cases. In the first case, $x \in f(U)-A$. Since the definition of A, there is a smallest integer k such that $x \notin \overline{f^{k}(U)}$. Then $k \geq 2$ and $L_{k}(x)>0$. Since $x \in \overline{f^{i}(U)}, L_{i}(x)=0$ for all k. Since $y \in f(x)$, we have

$$
y \in f\left(\overline{f^{k-1}(U)}\right) \subset \overline{f^{k}(U)}
$$

Then $L_{k}(y)=0$. Thus $L_{k}(y)<L_{k}(x)$. Hence $\lambda(y)<\lambda(x)$.
In the remaining case $x \in B(A, U)-f(U)$, there is a natural number i with the property that $f^{i}(x) \subset f(U)-A$. By the first case,

$$
M\left(L, f^{i}\right)(y) \leq M\left(L, f^{i+1}\right)(x)<M\left(L, f^{i}\right)(x)
$$

Hence $\lambda(y)<\lambda(x)$.

Lemma 3.10. $\lambda^{-1}(1)=X-B(A, U)$.
Proof. If $x \in X-B(A, U)$, then $f^{i}(x) \nsubseteq U$ for all i. Thus there is $y_{i} \in f^{i}(x)-U$ for every i. Since $y_{i} \notin U$, we have $L_{k}^{\prime}\left(y_{i}\right) \geq \varepsilon$ for all k. Then for every k,

$$
L_{k}^{\prime \prime}\left(y_{i}\right)=\frac{1}{k} \sum_{j=0}^{k-1} M\left(L_{k}^{\prime}, f^{j}\right)\left(y_{i}\right) \geq \varepsilon
$$

We have $L_{k}\left(y_{i}\right)=1$ for all k. Thus $L\left(y_{i}\right)=1$ and so $M\left(L, f^{i}\right)(x)=1$. Therefore $\lambda(x)=1$. Hence $X-B(A, U) \subset \lambda^{-1}(1)$.

Let $x \in \lambda^{-1}(1)$. Then $M\left(L, f^{i}\right)(x)=1$ for all i. Thus there is $y_{i} \in f^{i}(x)$ such that

$$
L\left(y_{i}\right)=M\left(L, f^{i}\right)(x)=1 .
$$

So $L_{k}\left(y_{i}\right)=1$ for all k. In particular, we have $L_{1}\left(y_{i}\right)=1$. Suppose that $x \in B(A, U)$. Then $f^{i}(x) \subset U$ for some i. Since $y_{i+1} \in f^{i+1}(x) \subset$ $f(U) \subset \overline{f(U)}$, we have $L_{1}\left(y_{i+1}\right)=0$. This is a contradiction. Thus $x \notin B(A, U)$. Therefore $\lambda^{-1}(1) \subset X-B(A, U)$. Hence $\lambda^{-1}(1)=$ $X-B(A, U)$.

From the above statements, we obtain the following theorem.
Theorem 3.1. Let U be an attractor block for f and let A be an attractor determined by U. Then there exists a continuous function $\lambda: X \rightarrow[0,1]$ such that
(1) $\lambda^{-1}(0)=A$,
(2) $\lambda^{-1}(1)=X-B(A, U)$,
(3) $M(\lambda, f)(x)<\lambda(x)$ for all $x \in B(A, U)-A$.

References

[1] E. Akin, The General Topology of Dynamical Systmes, Graduate in Mathematics, vol. 71, Amer. Math. Soc., Providence, 1993.
[2] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, NorthHolland, Amsterdam, 1994.
[3] S. Choi, C. Chu and J. Park, Chain recurrent sets for flows on noncompact spaces, J. Dynam. Differential Equations 14 (2000), 597-611.
[4] M. Hurley, Chain recurrence and attraction in noncompact spaces, Ergodic Theory Dynam. Systems 11 (1991,), 709-729.
[5] , Noncompact chain recurrence and attraction, Proc. Amer. Math. Soc. 115 (1992), 1139-1148.
[6] _, Lyapunov functions and attractor in arbitrary metric spaces, Proc. Amer. Math. Soc. 126 (1998), 245-256.
[7] _, Weak attractors from Lyapunov functions, Topology and its Applications 109 (2001), 201-210.
[8] R. McGehee, Attractors for closed relations on compact Hausdorff space, Indiana Univ. Math. J. 41 (1992), 1165-1209.

Jong Suh Park
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: jspark@math.cnu.ac.kr

[^0]: supported by the Research Foundations of Chungnam National University, 2001.

 Received by the editors on June 3, 2002 .
 2000 Mathematics Subject Classifications: 37B25, 54H20.
 Key words and phrases: attractor, attractor block, continuous relation, chain.

