• Title/Summary/Keyword: ($p_1,\p_2$)-Laplacian system

Search Result 3, Processing Time 0.018 seconds

EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEM WITH CONCAVE-CONVEX NONLINEARITIES

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.921-936
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of weak solutions of a weak solutions of a class of p-q-Laplacian system involving concave-convex nonlinearities: $$\{\array{-{\Delta}_pu-{\Delta}_qu={\lambda}V(x)|u|^{r-2}u+\frac{2{\alpha}}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\;x{\in}{\Omega}\\-{\Delta}p^v-{\Delta}q^v={\theta}V(x)|v|^{r-2}v+\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\;x{\in}{\Omega}\\u=v=0,\;x{\in}{\partial}{\Omega}}$$ where ${\Omega}$ is a bounded domain in $R^N$, ${\lambda}$, ${\theta}$ > 0, and 1 < ${\alpha}$, ${\beta}$, ${\alpha}+{\beta}=p^*=\frac{N_p}{N_{-p}}$ is the critical Sobolev exponent, ${\Delta}_su=div(|{\nabla}u|^{s-2}{\nabla}u)$ is the s-Laplacian of u. when 1 < r < q < p < N, we prove that there exist infinitely many weak solutions. We also obtain some results for the case 1 < q < p < r < $p^*$. The existence results of solutions are obtained by variational methods.

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.