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FUNDAMENTAL THEOREM OF UPPER AND LOWER

SOLUTIONS FOR A CLASS OF SINGULAR

(p1, p2)-LAPLACIAN SYSTEMS

Xianghui Xu and Yong-Hoon Lee1

Abstract. We introduce the fundamental theorem of upper and lower

solutions for a class of singular (p1, p2)-Laplacian systems and give the

proof by using the Schauder fixed point theorem. It will play an important
role to study the existence of solutions.

1. Introduction

In this paper, we introduce fundamental theorem of the upper and lower
solutions for singular general boundary value problem of the form

ϕp1(u′)′ + F1(t, u, v) = 0,

ϕp2(v′)′ + F2(t, u, v) = 0, t ∈ (0, 1),

u(0) = A1, u(1) = B1, v(0) = A2, v(1) = B2,

(S)

where ϕpi(x) = |x|pi−2x, x ∈ R, pi > 1, for i = 1, 2, each Ai, Bi ∈ R and each
Fi : (0, 1)× R2 → R satisfies the following assumptions

(1) For almost every t ∈ (0, 1), the function Fi(t, ·, ·) is continuous.
(2) For each (u, v) ∈ R2, the function Fi(·, u, v) is measurable on (0, 1).

Throughout the paper, we denote R = (−∞,∞), R+ = (0,∞), R2 = R×R, | · |
the absolute value in R and ‖(u, v)‖ = |u|+ |v| for (u, v) ∈ R2.

In the past years, there have been a lot of studies about the existence of
solutions for various separated two-point boundary value problems. Proofs of
all the existence results mainly make use of many kinds of nonlinear analytic
methods such as the fixed point theorem on cones [1, 3, 17], upper and lower
solution method [2, 4] [7]-[11] [14, 15], global bifurcation theorem [6, 12] or global
continuation theorem [13, 16]. Especially, the upper and lower solution method
is one of well-used methods. When we use the method, we need to construct so
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called the fundamental theorem of upper and lower solutions beside trying to
find the upper and lower solutions (see [2, 4] [7]-[11] [14, 15] and the references
therein). In this paper, we will introduce the fundamental theorem of upper and
lower solutions for a class of singular (p1, p2)-Laplacian system like (S) which
can cover all the cases emerged in [2, 4] [7]-[11] [14, 15] and will be the newest
so far.

Our paper is organized as follows. In Section 2, we introduce the main results
including the fundamental theorem of upper and lower solutions. In Section 3,
we will give the exact proofs for our main results.

2. Main results

Before introducing the fundamental theorem of the upper and lower solutions
for problem (S), we need firstly give some definitions as follows.

Definition 1. We say that (αu, αv) is a lower solution of problem (S) if
(αu, αv) ∈ (C[0, 1]× C[0, 1]) ∩ (C1(0, 1)× C1(0, 1)) and satisfies

ϕp1(α′u(t))′ + F1(t, αu(t), αv(t)) ≥ 0,

ϕp2(α′v(t))
′ + F2(t, αu(t), αv(t)) ≥ 0, t ∈ (0, 1),

αu(0) ≤ A1, αu(1) ≤ B1, αv(0) ≤ A2, αv(1) ≤ B2.

Similarly, we say that (βu, βv) is an upper solution of problem (S) if (βu, βv) ∈
(C[0, 1] × C[0, 1]) ∩ (C1(0, 1) × C1(0, 1)) and satisfies the reverse of the above
inequalities.

Definition 2. We say that F1 and F2 are quasi-monotone nondecreasing with
respect to v and u, respectively, if

F1(t, u, v1) ≤ F1(t, u, v2), whenever v1 ≤ v2,

F2(t, u1, v) ≤ F2(t, u2, v), whenever u1 ≤ u2.

Thus, we have the following fundamental theorem of upper and lower solutions
for the singular (p1, p2)-Laplacian system.

Theorem 2.1. Let (αu, αv) and (βu, βv) be a lower and upper solution of (S),
respectively, such that

(a1) (αu(t), αv(t)) ≤ (βu(t), βv(t)), for all t ∈ [0, 1].

Assume also that each hi : (0, 1)→ R+ is locally integrable such that

(a2)
∫ 1

2

0
ϕ−1pi

(∫ 1
2

s
hi(τ)dτ

)
ds+

∫ 1
1
2
ϕ−1pi

(∫ s
1
2
hi(τ)dτ

)
ds <∞, for i = 1, 2.

(a3) |Fi(t, u, v)| ≤ hi(t), for all (t, u, v) ∈ Dβ
α and i = 1, 2, where

Dβ
α = {(t, u, v) ∈ (0, 1)× R2 | (αu(t), αv(t)) ≤ (u, v) ≤ (βu(t), βv(t))}.

(a4) F1 and F2 are quasi-monotone nondecreasing with respect to v and u,
respectively.
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Then problem (S) has at least one solution (u, v) such that

(αu(t), αv(t)) ≤ (u(t), v(t)) ≤ (βu(t), βv(t)), for all t ∈ [0, 1].

To prove Theorem 2.1, we need give the following lemma.

Lemma 2.2. Assume that there exists hi : (0, 1) → R+ is locally integrable
satisfying (a2) such that

|Fi(t, u, v)| ≤ hi(t), for all (t, u, v) ∈ (0, 1)× R2 and i = 1, 2.

Then problem (S) has a solution.

Remark 1. From the definition of ϕpi , then for any x, y ∈ R, we have

ϕ−1pi (|x|+ |y|) ≤ Cpi
(
ϕ−1pi (|x|) + ϕ−1pi (|y|)

)
,

where

Cpi =

{
1, pi > 2,

2
2−pi
pi−1 , 1 < pi ≤ 2.

3. Proofs of main results

In this section, we give the exact proofs of main results. For this, we need
the following well-known Schauder fixed point theorem.

Theorem 3.1. ([5]) Let X be a Banach space and let M be a closed, convex
and bounded set in X. Assume that T : M → M is completely continuous.
Then T has a fixed point in M .

To set up the solution operator for (S), let us take X = C[0, 1] × C[0, 1]
as a Banach space with norm ‖(u, v)‖∞ = ‖u‖∞ + ‖v‖∞, for all (u, v) ∈ X.

By the assumptions on Fi, we can denote NFi(u, v)(t) , Fi(t, u(t), v(t)), where
NFi

: X → R is called the Nemytskii operator corresponding to Fi for i = 1, 2.
Motivated by the solution operator established in Sim-Lee [16], for (u, v) ∈ X,
we define T i : X → C[0, 1] by

T i(u, v)(t) =


∫ t
0
ϕ−1pi

(
ai(NFi(u, v)) +

∫ 1
2

s
Fi(τ, u(τ), v(τ))dτ

)
ds, t ∈ [0, 12 ],∫ 1

t
ϕ−1pi

(
−ai(NFi(u, v)) +

∫ s
1
2
Fi(τ, u(τ), v(τ))dτ

)
ds, t ∈ [ 12 , 1],

where ai(NFi(u, v)) ∈ R uniquely satisfies∫ 1
2

0

ϕ−1pi

(
ai(NFi(u, v)) +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

=

∫ 1

1
2

ϕ−1pi

(
−ai(NFi

(u, v)) +

∫ s

1
2

Fi(τ, u(τ), v(τ))dτ

)
ds,

and

T (u, v) = (T 1(u, v), T 2(u, v)).
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Then we can easily see that problem (S) can be equivalently written as (u, v) =

T (u, v) in X. For simplicity, we denote ai , ai(NFi
(u, v)).

Remark 2. By the similar arguments in Sim-Lee [16], we can also regard the
function ai as a function of (u, v) and then obtain (1) ai sends bounded sets in
X into bounded sets in R for i = 1, 2. (2) ai : X → R is continuous for i = 1, 2.
By these properties of ai, we can deduce the following lemma.

Lemma 3.2. T : X → X is completely continuous.

Proof. For the continuity of T , let us assume that (un, vn)→ (u, v) in X, then
from the continuity of ai, Fi and Lebesgue dominated convergence theorem, we
have

‖T (un, vn)− T (u, v)‖∞

=

2∑
i=1

‖T i(un, vn)− T i(u, v)‖∞ =

2∑
i=1

sup
t∈[0,1]

|T i(un, vn)− T i(u, v)|

≤
2∑
i=1

[
sup
t∈[0, 12 ]

|T i(un, vn)− T i(u, v)|+ sup
t∈[ 12 ,1]

|T i(un, vn)− T i(u, v)|

]

≤
2∑
i=1

[
sup
t∈[0, 12 ]

∣∣∣∣∣
∫ t

0

ϕ−1pi

(
ain +

∫ 1
2

s

Fi(τ, un(τ), vn(τ))dτ

)

−ϕ−1pi

(
ain +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣∣
+ sup
t∈[ 12 ,1]

∣∣∣∣∣
∫ 1

t

ϕ−1pi

(
−ain +

∫ s

1
2

Fi(τ, un(τ), vn(τ))dτ

)

−ϕ−1pi

(
−ain +

∫ s

1
2

Fi(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣∣
]
→ 0.

Next, let B be a bounded subset of X. Then by Ascoli-Arzela theorem, it
is enough to show that T (B) is uniformly bounded and equicontinuous. We first
prove that T (B) is uniformly bounded. Indeed, takeKi = sup{|ai(NFi

(u, v))| | (u, v) ∈
B} and by the assumption on Fi in Lemma 2.2, there is hi(t) such that |Fi(t, u, v)| ≤
hi(t) for a.e. t ∈ (0, 1) and all (u, v) ∈ B. Thus, we can compute the bound on
the interval [0, 12 ] as follows, the bound on the interval [ 12 , 1] can be obtained by
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the similar way.

‖T (u, v)(t)‖ =

2∑
i=1

|T i(u, v)(t)|

=

2∑
i=1

∣∣∣∣∣
∫ t

0

ϕ−1pi

(
ai +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣∣
≤

2∑
i=1

∣∣∣∣∣
∫ t

0

ϕ−1pi

(
|ai|+

∫ 1
2

s

|Fi(τ, u(τ), v(τ))|dτ

)
ds

∣∣∣∣∣
≤

2∑
i=1

∫ 1
2

0

ϕ−1pi

(
Ki +

∫ 1
2

s

hi(τ)dτ

)
ds

≤
2∑
i=1

[
1

2
Cpiϕ

−1
pi (Ki) + Cpi

∫ 1
2

0

ϕ−1pi

(∫ 1
2

s

hi(τ)dτ

)
ds

]
.

Finally, we prove the equicontinuity of T (B). Assume that t1 < t2.
Case 1 (t1, t2 ∈ [0, 12 ]).

‖T (u, v)(t1)− T (u, v)(t2)‖ =

2∑
i=1

|T i(u, v)(t1)− T i(u, v)(t2)|

≤
2∑
i=1

∣∣∣∣∣
∫ t2

t1

ϕ−1pi

(
|ai|+

∫ 1
2

s

|Fi(τ, u(τ), v(τ))|dτ

)
ds

∣∣∣∣∣
≤

2∑
i=1

∫ t2

t1

ϕ−1pi

(
Ki +

∫ 1
2

s

hi(τ)dτ

)
ds

≤
2∑
i=1

[
Cpiϕ

−1
pi (Ki)(t2 − t1) + Cpi

∫ t2

t1

ϕ−1pi

(∫ 1
2

s

hi(τ)dτ

)
ds

]
.

The bound of the case above is independent of (u, v) ∈ B and by the property
of hBi , we see that the bound converges to 0 as |t1 − t2| → 0.
Case 2 (t1, t2 ∈ [ 12 , 1]).
Proof can be done by the similar argument as Case 1.
Case 3 (0 < t1 ≤ 1

2 < t2 < 1).

Without loss of generality, we assume that 1
4 ≤ t1 ≤ 1

2 < t2 ≤ 3
4 . Then, by
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using the definition of ai, we have

‖T (u, v)(t1)− T (u, v)(t2)‖ =

2∑
i=1

|T i(u, v)(t1)− T i(u, v)(t2)|

=

2∑
i=1

∣∣∣∣∣
∫ t1

0

ϕ−1pi

(
ai +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

−
∫ 1

t2

ϕ−1pi

(
−ai +

∫ s

1
2

Fi(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣∣
=

2∑
i=1

∣∣∣∣∣
∫ t1

0

ϕ−1pi

(
ai +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

−
∫ 1

2

0

ϕ−1pi

(
ai +

∫ 1
2

s

Fi(τ, u(τ), v(τ))dτ

)
ds

+

∫ 1

1
2

ϕ−1pi

(
−ai +

∫ s

1
2

Fi(τ, u(τ), v(τ))dτ

)
ds

−
∫ 1

t2

ϕ−1pi

(
−ai +

∫ s

1
2

Fi(τ, u(τ), v(τ))dτ

)
ds

∣∣∣∣∣ .
Using the properties of ai and Fi, we obtain

‖T (u, v)(t1)− T (u, v)(t2)‖

≤
2∑
i=1

[∫ 1
2

t1

ϕ−1pi

(
Ki +

∫ 1
2

s

hi(τ)dτ

)
ds+

∫ t2

1
2

ϕ−1pi

(
Ki +

∫ s

1
2

hi(τ)dτ

)
ds

]

≤
2∑
i=1

[
ϕ−1pi

(
Ki + ‖hi‖L1[ 14 ,

1
2 ]

)
|t1 −

1

2
|+ ϕ−1pi

(
Ki + ‖hi‖L1[ 12 ,

3
4 ]

)
|t2 −

1

2
|
]

≤
2∑
i=1

[
2ϕ−1pi

(
Ki + ‖hi‖L1[ 14 ,

3
4 ]

)
|t1 − t2|

]
.

Conclusion is the same as Case 1 and it completes the proof of equicontinuity.
�

Proof of Lemma 2.2. let us take r =
∑2
i=1 ri with

ri = max

{
|Ai|+

∫ 1
2

0

ϕ−1
pi

(∫ 1
2

s

hi(τ)dτ

)
ds, |Bi|+

∫ 1

1
2

ϕ−1
pi

(∫ s

1
2

hi(τ)dτ

)
ds

}
,

and M = {(u, v) ∈ X | ‖(u, v)‖∞ ≤ r}. For any (u, v) ∈M , we know T i(u, v) ∈
C[0, 1] ∩ C1(0, 1), i = 1, 2. Thus the maximal point of |T i(u, v)(t)| must be at
the boundary t = 0, t = 1 or one extremal point σi ∈ (0, 1). If the maximal
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point is t = 0 (or t = 1), then we get

‖T i(u, v)‖∞ = |T i(u, v)(0)| = |Ai| (or ‖T i(u, v)‖∞ = |T i(u, v)(1)| = |Bi|).
If the maximal point is one extremal point σi ∈ (0, 1), then we also consider two
cases ai ≥ 0 and ai < 0, applying the same argument in the proof of Theorem
2 for case (1) in Xu and Lee [17], we have

‖T i(u, v)‖∞

≤ max

{
|Ai|+

∫ 1
2

0

ϕ−1
pi

(∫ 1
2

s

hi(τ)dτ

)
ds, |Bi|+

∫ 1

1
2

ϕ−1
pi

(∫ s

1
2

hi(τ)dτ

)
ds

}
= ri,

and then

‖T (u, v)‖∞ =

2∑
i=1

‖T i(u, v)‖∞ ≤ r, for (u, v) ∈M.

By Theorem 3.1, we get that T has a fixed point in M . i.e., problem (S) has a
solution in M .

Finally, we give the exact proof of Theorem 2.1, mainly using Lemma 2.2.

Proof of Theorem 2.1. Let us consider the modified problem
ϕp1(u′)′ + F ∗1 (t, u, v) = 0,

ϕp2(v′)′ + F ∗2 (t, u, v) = 0, t ∈ (0, 1),

u(0) = A1, u(1) = B1, v(0) = A2, v(1) = B2,

(S∗)

where F ∗i (t, u, v) = Fi(t, p1(t, u, v), p2(t, u, v)), for i = 1, 2, and

p1(t, u, v) = max{αu(t),min{u, βu(t)}},
p2(t, u, v) = max{αv(t),min{v, βv(t)}}.

Then F ∗i : (0, 1)× R2 → R is continuous and satisfies the conditions in Lemma
2.2 for i = 1, 2. By Lemma 2.2, we see that problem (S∗) has a solution (u, v).
If we can show that solution (u, v) satisfies

(αu(t), αv(t)) ≤ (u(t), v(t)) ≤ (βu(t), βv(t)), for all t ∈ [0, 1],

then problem (S∗) is equivalent to problem (S) and the proof will be done.
Suppose that it is not true, then u(t) 6≤ βu(t) or v(t) 6≤ βv(t) for t ∈ [0, 1].
Here we assume that u(t) 6≤ βu(t) for t ∈ [0, 1]. The other inequality can be
proved by the similar argument. By the boundary values of u and βu, there
exist T1, T2 ∈ (0, 1) such that

u(t)− βu(t) > 0 on (T1, T2), u(T1)− βu(T1) = 0 = u(T2)− βu(T2).

For t ∈ (T1, T2), we have

− ϕp1(u′(t))′ = F ∗1 (t, u(t), v(t)) = F1(t, p1(t, u(t), v(t)), p2(t, u(t), v(t)))

= F1(t, βu(t), p2(t, u(t), v(t))) = F1(t, βu(t), βv(t)),

and
−ϕp1(β′u(t))′ ≥ F1(t, βu(t), βv(t)).
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Thus, we have

ϕp1(u′(t))′ ≥ ϕp1(β′u(t))′. (1)

Since u − βu ∈ C0[T1, T2], there exists t0 ∈ (T1, T2) and 0 < δ < T2 − t0
such that u(t0) − βu(t0) = maxt∈[T1,T2]{u(t) − βu(t)}, u′(t0) − β′u(t0) = 0 and
u′(t)− β′u(t) < 0, for t ∈ (t0, t0 + δ). Integrating on both sides of (1) from t0 to
t ∈ (t0, t0 + δ), then we get

ϕp1(u′(t))− ϕp1(u′(t0)) ≥ ϕp1(β′u(t))− ϕp1(β′u(t0)).

Since ϕp1 is increasing, we have

u′(t) ≥ β′u(t), for t ∈ (t0, t0 + δ),

which is a contradiction and it completes the proof.
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