• Title/Summary/Keyword: ($P,P^t$)-operator

Search Result 150, Processing Time 0.019 seconds

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

THE APPLICATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TO POPULATION GENETIC MODEL

  • Choi, Won;Choi, Dug-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.677-683
    • /
    • 2003
  • In multi-allelic model $X\;=\;(x_1,\;x_2,\;\cdots\;,\;x_d),\;M_f(t)\;=\;f(p(t))\;-\;{\int_0}^t\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we examine the stochastic differential equation for model X and find the properties using stochastic differential equation.

ON THE DIFFUSION PROCESSES AND THEIR APPLICATIONS IN POPULATION GENETICS

  • Choi, Won;Lee, Byung-Kwon
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.415-423
    • /
    • 2004
  • In allelic model X = ($x_1,\;x_2,...x_{d}$), $M_f(t)$= f(p(t)) - ${{\int}^{t}}_0$Lf(p(t))ds is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show uniqueness of martingale problem associated with mean vector and obtain a complete description of ergodic property by using of the semigroup method.

SOME RESULTS OF EVOLUTION OF THE FIRST EIGENVALUE OF WEIGHTED p-LAPLACIAN ALONG THE EXTENDED RICCI FLOW

  • Azami, Shahroud
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.953-966
    • /
    • 2020
  • In this article we study the evolution and monotonicity of the first non-zero eigenvalue of weighted p-Laplacian operator which it acting on the space of functions on closed oriented Riemannian n-manifolds along the extended Ricci flow and normalized extended Ricci flow. We show that the first eigenvalue of weighted p-Laplacian operator diverges as t approaches to maximal existence time. Also, we obtain evolution formulas of the first eigenvalue of weighted p-Laplacian operator along the normalized extended Ricci flow and using it we find some monotone quantities along the normalized extended Ricci flow under the certain geometric conditions.

ESTIMATES FOR SCHRÖDINGER MAXIMAL OPERATORSALONG CURVE WITH COMPLEX TIME

  • Niu, Yaoming;Xue, Ying
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.89-111
    • /
    • 2020
  • In the present paper, we give some characterization of the L2 maximal estimate for the operator Pta,γf(Γ(x, t)) along curve with complex time, which is defined by $$P^t_{a,{\gamma}}f({\Gamma}(x,t))={\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}}}}\;e^{i{\Gamma}(x,t){\xi}}e^{it{\mid}{\xi}{\mid}^a}e^{-t^{\gamma}{\mid}{\xi}{\mid}^a}{\hat{f}}({\xi})d{\xi}$$, where t, γ > 0 and a ≥ 2, curve Γ is a function such that Γ : ℝ×[0, 1] → ℝ, and satisfies Hölder's condition of order σ and bilipschitz conditions. The authors extend the results of the Schrödinger type with complex time of Bailey [1] and Cho, Lee and Vargas [3] to Schrödinger operators along the curves.

ON THE CLASS OF κTH ROOTS OF PARANORMAL OPERATORS

  • YANG, YOUNG OH
    • Honam Mathematical Journal
    • /
    • v.26 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • we shall study some properties of a new class ($\sqrt[\kappa]{P}$) (defined below). Also we show that T may not be normaloid when $T{\in}(\sqrt[\kappa]{P})$, and that the class ($\sqrt{H}$) may not have the translation-invariant propety.

  • PDF

CONSTANT-SIGN SOLUTIONS OF p-LAPLACIAN TYPE OPERATORS ON TIME SCALES VIA VARIATIONAL METHODS

  • Zhang, Li;Ge, Weigao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1131-1145
    • /
    • 2012
  • The purpose of this paper is to use an appropriate variational framework to discuss the boundary value problem with p-Laplacian type operators $$\{({\alpha}(t,x^{\Delta}(t)))^{\Delta}-a(t){\phi}_p(x^{\sigma}(t))+f({\sigma}(t),x^{\sigma}(t))=0,\;{\Delta}-a.e.\;t{\in}I\\x^{\sigma}(0)=0,\\{\beta}_1x^{\sigma}(1)+{\beta}_2x^{\Delta}({\sigma}(1))=0,$$ where ${\beta}_1$, ${\beta}_2$ > 0, $I=[0,1]^{k^2}$, ${\alpha}({\cdot},x({\cdot}))$ is an operator of $p$-Laplacian type, $\mathbb{T}$ is a time scale. Some sufficient conditions for the existence of constant-sign solutions are obtained.

ON A SUBCLASS OF CERTAIN STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Kamali, Muhammet;Orhan, Halit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.53-71
    • /
    • 2004
  • A certain subclass $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ of starlike functions in the unit disk is introduced. The object of the present paper is to derive several interesting properties of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Coefficient inequalities, distortion theorems and closure theorems of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are determined. Also we obtain radii of convexity for the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Furthermore, integral operators and modified Hadamard products of several functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are studied here.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.