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ESTIMATES FOR SCHRÖDINGER MAXIMAL OPERATORS

ALONG CURVE WITH COMPLEX TIME

Yaoming Niu and Ying Xue

Abstract. In the present paper, we give some characterization of the

L2 maximal estimate for the operator P ta,γf
(
Γ(x, t)

)
along curve with

complex time, which is defined by

P ta,γf
(
Γ(x, t)

)
=

∫
R
eiΓ(x,t)ξeit|ξ|

a
e−t

γ |ξ|a f̂(ξ)dξ,

where t, γ > 0 and a ≥ 2, curve Γ is a function such that Γ : R×[0, 1]→ R,
and satisfies Hölder’s condition of order σ and bilipschitz conditions. The

authors extend the results of the Schrödinger type with complex time of
Bailey [1] and Cho, Lee and Vargas [3] to Schrödinger operators along

the curves.

1. Introduction

Suppose f ∈ S(R), the Schwartz class on R, for a > 1, time parameter t > 0,
define

Staf(x) = (2π)−1

∫
R
eix·ξ+it|ξ|

a

f̂(ξ)dξ, (x, t) ∈ R× R+,

where f̂(ξ) =
∫
R e
−iξ·xf(x)dx. When a = 2, it is well known that eit∆f(x) :=

St2f(x) is the solution of the Schrödinger equation{
i∂tu−∆u = 0,
u(x, 0) = f(x).

(1.1)

Define the maximal operator S∗af associated with the family of operators
{Sta}0<t<1 by

S∗af(x) = sup
0<t<1

|Staf(x)|, x ∈ R.
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In 1979, Carleson [2] proposed a problem: Determining the optimal exponent
s for which

lim
t→0

eit∆f(x) = f(x), a.e. x ∈ R(1.2)

holds whenever f ∈ Hs(R). Here Hs(R) (s ∈ R) denotes the non-homogeneous
Sobolev space, which is defined by

Hs(R) =

{
f ∈ S ′ : ‖f‖Hs =

(∫
R
(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

<∞
}
.

Carleson first considered this problem for one spatial dimension in the context
of Hölder continuous functions, an immediate consequence of his work was that
when f is taken in the Sobolev space H

1
4 (R), the following estimate may be

established

‖S∗2f‖L2([−1,1]) ≤ C‖f‖H 1
4 (R)

.

Hence, Carleson in [2] showed that the pointwise convergence (1.2) holds for
data in Hs(R) with s ≥ 1

4 , which is sharp was proved by Dahlberg and Kenig
in [4]. On the other hand, Vega in [12] showed that

(1.3) ‖S∗2f‖L2(R) ≤ C‖f‖Hs(R)

holds for s > 1
2 , and that this estimate fails for s < 1

2 . The estimate (1.3)

for s = 1
2 is open. Moreover, for a > 1, Sjölin [7] proved the following global

estimate

(1.4) ‖S∗af‖L2(R) ≤ C‖f‖Hs(R)

holds for s > a
4 , and (1.4) fails for s < a

4 . The problem of boundedness for
s = a

4 remains open.
When the definition of the solution operator for the Schrödinger equation is

extended to allow complex-valued time with positive imaginary part, then for
t ≥ 0, the operator Sit2 is the solution operator for the heat equation

∂tu(t, x) = ∂2
x(t, x).

Since Sit2 is a convolution operator with a Gaussian multiplier, by the bound-
edness of the Hardy-Littlewood maximal function, the estimate yields∥∥∥∥ sup

0<t<1
|Sit2 f(x)|

∥∥∥∥
L2(R)

≤ C‖f‖L2(R).

By this result and Vega’s result of estimate (1.3), naturally, one may consider
a problem: for which maps g : [0, 1]→ [0,1] with limt→0 g(t) = 0 and for which
s > 0, such that ∥∥∥∥ sup

0<t<1
|St+ig(t)2 f(x)|

∥∥∥∥
L2(R)

≤ C‖f‖Hs(R).
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This interesting question was posed and partially answered by Sjölin in [8]. For
t, γ > 0 and a > 1, the operator P ta,γf with complex time is defined by

P ta,γf(x) = St+it
γ

a f(x) =

∫
Rn
eixξeit|ξ|

a

e−t
γ |ξ|a f̂(ξ)dξ,

with the corresponding maximal operator P ∗a,γ is defined by

P ∗a,γf(x) = sup
0<t<1

|P ta,γf(x)|, x ∈ R.

The global estimate is defined by

(1.5) ‖P ∗a,γf‖L2(R) ≤ C‖f‖Hs(R).

When γ > 0 and a > 1, we denote by Eγ the set of all s > 0 such that (1.5)
holds, and set

sa(γ) = inf Eγ .

When a = 2, Sjölin in [8], Sjölin and Soria in [10] obtained some results of the
estimate (1.5). Recently, Bailey in [1] improved and extended above results.
More precisely, Bailey obtained the following results.

Theorem A ([1]). For γ ∈ (0,∞) and a > 1, sa(γ) = max{a4 (1− 1
γ ), 0}.

On the other hand, one may consider the solution eit∆f of equation (1.1)
converges to f nontangentially for a.e. x ∈ Rn. That is, for α > 0 and f ∈
Hs(Rn), for which s such that

lim
(y,t)∈Γα(x)
(y,t)→(x,0)

eit∆f(y) = f(x), a.e. x ∈ Rn,(1.6)

where Γα(x) = {(y, t) ∈ Rn+1
+ : |y − x| < αt}. If s > n

2 , then by Sobolev
imbedding,

sup
x∈Rn,t∈R

|eit∆f(x)| ≤ C‖f‖Hs(Rn).

By a standard argument, (1.6) holds for s > n
2 . However, Sjögren and Sjölin

[9] proved that (1.6) fails for s ≤ n
2 . In fact, in [9], they proved that there is an

f ∈ H n
2 (Rn) and a strictly increasing function Γ with Γ(0) = 0, such that for

all x ∈ Rn,
lim sup

(y,t)→(x,0),t>0
|x−y|<Γ(t)

|eit∆f(y)| =∞.

Hence, an interest problem is whether there exists an appropriate curve Γ(x, t)
and s > 0, such that for f ∈ Hs(R), the following pointwise convergence holds
along the curve (Γ(x, t), t):

lim
t→0

eit∆f
(
Γ(x, t)

)
= f(x), a.e. x ∈ R,(1.7)

where

eit∆f
(
Γ(x, t)

)
= (2π)−1

∫
R
eiΓ(x,t)·ξ+it|ξ|2 f̂(ξ)dξ.
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Recently, Lee and Rogers [6], Cho, Lee and Vargas [3] considered this prob-
lem and gave an affirmative answer. Assume that Γ is a function such that
Γ : R× [−1, 1]→ R, Γ(x, 0) = x, and Γ satisfies the following conditions: There
exist constants Ci (i=1, 2, 3), independent of x, y and t, t′, such that

(A1) Hölder condition of order σ in t:

|Γ(x, t)− Γ(x, t′)| ≤ C1|t− t′|σ;

(A2) Bilipschitz condition in x:

C2|x− y| ≤ |Γ(x, t)− Γ(y, t)| ≤ C3|x− y|.
Here σ is essentially the degree of tangential convergence. For x0, t0 ∈ R and
R, T > 0, denote

B(x0, R) := {x ∈ R; |x− x0| ≤ R}, IT (t0) := {t ∈ R; |t− t0| ≤ T}.
The authors in [3] obtained the following results:

Theorem B ([3]). Assume Γ satisfies the conditions (A1), (A2) for 0 < σ ≤ 1
and x, y ∈ B(x0, R), t, t′ ∈ IT (t0). If s > max{ 1

2 − σ,
1
4}, then

(1.8)

∥∥∥∥ sup
t∈IT (t0)

∣∣∣eit∆f(Γ(x, t)
)∣∣∣∥∥∥∥

L2(B(x0,R))

≤ C‖f‖Hs(R).

Inspired by the above works, we will consider a class of oscillatory integral
operators along curve Γ with complex time. For t, γ > 0 and a > 1, the operator
P ta,γf

(
Γ(x, t)

)
along curve Γ with complex time, which is defined by

P ta,γf
(
Γ(x, t)

)
= St+it

γ

a f
(
Γ(x, t)

)
=

∫
R
eiΓ(x,t)ξeit|ξ|

a

e−t
γ |ξ|a f̂(ξ)dξ,

and with the corresponding maximal operator P ∗a,γ,Γf is defined by

P ∗a,γ,Γf(x) = sup
t∈[0,1]

|P ta,γf
(
Γ(x, t)

)
|, x ∈ R.

We will consider the global estimate

(1.9) ‖P ∗a,γ,Γf‖L2(R) ≤ C‖f‖Hs(R)

and the local estimate

(1.10) ‖P ∗a,γ,Γf‖L2([−1,1]) ≤ C‖f‖Hs(R).

When γ > 0 and a > 1, we denote by EΓ,γ the set of all s > 0 such that (1.9)
holds, and set

sa,Γ(γ) = inf EΓ,γ .

And denote by FΓ,γ the set of all s > 0 such that (1.10) holds, and set

sloca,Γ(γ) = inf FΓ,γ .

In the present paper, we will give some characterization of the global L2

maximal estimate (1.9) and the local L2 maximal estimate (1.10). Now we
state our main results in this paper as follows.
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Theorem 1.1. Let γ > 1 and a ≥ 2. Let Γ be a function such that Γ :
R × [0, 1] → R and Γ(x, 0) = x. Assume that Γ satisfies the conditions (A1)
for 1

a ≤ σ ≤ 1 and (A2) for x, y ∈ R and t, t′ ∈ [0, 1]. Then

sa,Γ(γ) =
a

4
(1− 1

γ
).

Remark 1.2. In fact, from the proof of Theorem 1.1, when a > 1 and γ > 1, we
proved that the global estimate (1.9) holds for s > a

4 (1 − 1
γ ). Moreover, when

a ≥ 2 and γ > 1, we showed that the global estimate (1.9) fails if s < a
4 (1− 1

γ ).

However, when 1 < a < 2, we cannot proved that the global estimate (1.9) fails
if s < a

4 (1− 1
γ ).

Theorem 1.3. Let γ > 1 and a ≥ 2. Let Γ be a function such that Γ :
R × [0, 1] → R and Γ(x, 0) = x. Assume that Γ satisfies the conditions (A1)
for 1

a ≤ σ ≤ 1 and (A2) for x, y ∈ [−1, 1] and t, t′ ∈ [0, 1]. Then

sloc
a,Γ(γ) = min

{a
4

(1− 1

γ
),

1

4

}
.

Remark 1.4. In the case of γ > 1 and a ≥ 2. Let Γ(x, t) = x for any t ∈ R,
then (1.9) is just (1.5). In this sense, Theorem 1.1 is an extension of Theorem
A in [1].

Remark 1.5. From the result in [3], there are curves Γ satisfying the conditions
(A1), (A2) for 0 < σ ≤ 1 and x, y ∈ B(x0, R), t, t′ ∈ IT (t0), but the local
maximal estimate (1.8) fails if s < max{ 1

2 − σ,
1
4}. Hence, when B(x0, R) =

[−1, 1], IT (t0) = [0, 1], and Γ satisfies the conditions (A1) for 1
2 ≤ σ ≤ 1 and

(A2) for x, y ∈ [−1, 1] and t, t′ ∈ [0, 1], the local maximal estimate (1.8) fails if
s < 1

4 . However, by the results of Theorem 1.3, when a = 2, 1 < γ < 2, and

Γ satisfies the conditions (A1) for 1
2 ≤ σ ≤ 1 and (A2) for x, y ∈ [−1, 1] and

t, t′ ∈ [0, 1], the local estimate (1.10) holds for s > 1
2 −

1
2γ ( 1

2 −
1

2γ <
1
4 ).

As an application of the local maximal estimate (1.10), we give the pointwise
convergence along curve Γ. More precisely, we have the following corollary.

Corollary 1.6. Let γ > 1, a > 1 and 1
a ≤ σ ≤ 1. Suppose that for every

x0 ∈ R, there exists a neighborhood V of (x0, 0) such that (A1) holds for (x, t),
(x, t′) ∈ V and (A2) holds for all (x, t), (y, t) ∈ V. Then for f ∈ Hs(R), if
s > a

4 (1− 1
γ ) when 1 < γ < a

a−1 or s ≥ 1
4 when γ ≥ a

a−1 ,

lim
t→0

P ta,γf
(
Γ(x, t)

)
= f(x), a.e. x ∈ R.(1.11)

This paper is organized as follows. The proof of Theorem 1.1 is given in
Section 2. In the proof of Theorem 1.1, Lemma 2.3 plays an important role,
whose proof will be given in Section 3. The proof of Theorem 1.3 is given in
Section 4.
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2. Proof of Theorem 1.1

To prove Theorem 1.1, we first prove the following results.

Theorem 2.1. Let γ > 1 and a ≥ 2. Assume that Γ satisfies the condition
(A1) for 1

a ≤ σ ≤ 1, x ∈ R and t, t′ ∈ [0, 1]. Then

(2.1) ‖P ∗a,γ,Γf‖L2(R) ≤ C‖f‖Hs(R)

fails if s < a
4 (1− 1

γ ).

Proof of Theorem 2.1. The proof of Theorem 2.1 given here follows the similar
strategy used to prove that the estimate (1.5) cannot hold for s < a

4 (1 −
1
γ ) in [1] when a > 1 and γ > 1. Fix γ > 1, a ≥ 2 and s < a

4 (1 − 1
γ ).

And for each v ∈ (0, 1), we choose a positive, even and real valued function

gv ∈ S(R), such that supp gv ⊂ [−v(a−1)− aγ , v(a−1)− aγ ], and gv(ξ) = 1 if ξ ∈
[− 1

2v
(a−1)− aγ , 1

2v
(a−1)− aγ ]. Define the function fv such that f̂v(ξ) = vgv(vξ+ 1

v ).

Note that the following fact: when s < a
4 (1− 1

γ ),

(2.2) ‖fv‖Hs(R) → 0 (as v → 0).

In fact, by the support of gv, v ∈ (0, 1) and (a − 1) − a
γ > −1, it follows that

ξ + 1
v ∈ [−v(a−1)− aγ , v(a−1)− aγ ], and |ξ| ≤ v(a−1)− aγ + 1

v ≤ 2 1
v . Hence, by a

straightforward calculation, we have

‖fv‖2Hs(R) = v2

∫
R

∣∣∣∣gv(vξ +
1

v
)

∣∣∣∣2(1 + |ξ|2)sdξ

= v

∫
R

∣∣∣∣gv(ξ +
1

v
)

∣∣∣∣2(v2 + |ξ|2

v2

)s
dξ

≤ Cv1−2sv(a−1)− aγ v−2s = Cva−4s− aγ .

Thus, when s < a
4 (1− 1

γ ), (2.2) holds. Observe that

P ta,γfv
(
Γ(x, t)

)
=

∫
R
eiΓ(x,t)ξeit|ξ|

a

e−t
γ |ξ|avgv(vξ +

1

v
)dξ.

Let η = vξ + 1
v , we have∣∣P ta,γfv(Γ(x, t)

)∣∣ =

∣∣∣∣ ∫
R
ei(Γ(x,t) ηv+t| ηv−

1
v2 |

a)e−t
γ | ηv−

1
v2 |

a

gv(η)dη

∣∣∣∣.
Define

Fx,t,v(η) = Γ(x, t)
η

v
+ t
∣∣η
v
− 1

v2

∣∣a − t

v2a
,

Gt,v(η) = tγ
∣∣η
v
− 1

v2

∣∣a.
Since e−i

t
v2a is unimodular and does not depend on η, so ei(Γ(x,t) ηv+t

∣∣ η
v−

1
v2

∣∣a)

in above integral can be replaced with eiFx,t,v(η). Noting that

supp gv ⊂ [−v(a−1)− aγ , v(a−1)− aγ ],
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it follows that

(2.3)

|P ta,γfv
(
Γ(x, t)

)
| ≥ |Re

(
P ta,γfv

(
Γ(x, t)

))
|

≥
∣∣∣∣ ∫ v

(a−1)− a
γ

−v(a−1)− a
γ

cos(Fx,t,v(η))e−Gt,v(η)gv(η)dη

∣∣∣∣.
Note that (a− 1)− a

γ > −1. Choosing c0 is a small positive constant, thus by

Taylor’ formula, for |η| ≤ c0v(a−1)− aγ , we have∣∣∣∣ηv − 1

v2

∣∣∣∣a =

(
1

v2
− η

v

)a
=

1

v2a
− aη

v2(a−1)+1
+O

(
η2

v2(a−2)+2

)
.

Since Γ(x, 0) = x, we get

Fx,t,v(η) =
(
Γ(x, t)− Γ(x, 0)

)η
v

+ x
η

v
− ta η

v2a−1
+O

( tη2

v2(a−1)

)
.

For a fixed x ∈ [0, v
2a
γ −2(a−1)], we choose t = xv2(a−1)

a ∈ [0, 1]. Then

Fx,t,v(η) =
(
Γ(x, t)− Γ(x, 0)

)η
v

+O(xη2).

When Γ satisfies the conditions (A1) with 1
a ≤ σ ≤ 1, that is

∣∣Γ(x, t)−Γ(x, 0)
∣∣ ≤

C1t
σ with 1

a ≤ σ ≤ 1, it follows that

|Fx,t,v(η)| ≤ C1t
σ η

v
+
a(a− 1)

2
xη2.

Noting that x ∈ [0, v
2a
γ −2(a−1)], |η| ≤ c0v

(a−1)− aγ , c0 and v are small positive
constants, aσ ≥ 1, and a ≥ 2, we have

|Fx,t,v(η)| ≤ C1c0(
1

a
)σv[ 2a

γ −2(a−1)]σv2(a−1)σv(a−1)− aγ−1

+
a(a− 1)c0

2
v

2a
γ −2(a−1)+2(a−1)− 2a

γ

= C1c0(
1

a
)σv

2aσ−a
γ +a−2 +

a(a− 1)c0
2

v0

≤ C1c0(
1

a
)σv(a−2)(1− 1

γ ) +
a(a− 1)c0

2

≤ C1c0(
1

a
)σ +

a(a− 1)c0
2

≤ 1.

Here, we used the fact c0 is a small positive constant. By Taylor’ formula, for

|η| ≤ c0v(a−1)− aγ , we have∣∣η
v
− 1

v2

∣∣a =
( 1

v2
− η

v

)a
=

1

v2a
+O

(
η

v2(a−1)+1

)
= O(

1

v2a
).

It follows that

Gt,v(η) = xγv2γ(a−1)a−γO(
1

v2a
) = O(xγv2aγ−2γ−2a).
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Since x ∈ [0, v
2a
γ −2(a−1)], it follows that

Gt,v(η) ≤ Cv2a−2γ(a−1)+2aγ−2γ−2a ≤ C.

Hence, for |η| ≤ c0v
(a−1)− aγ , cos(Fx,t,v(η)) ≥ C and e−Gt,v(η) ≥ C. Thus, by

(2.3), for x ∈ [0, v
2a
γ −2(a−1)], we have

|P ta,γfv
(
Γ(x, t)

)
| ≥ Cv(a−1)− aγ .

Thus, we have

‖P ta,γfv‖2L2(R) ≥ Cv
2a
γ −2(a−1)v2(a−1)− 2a

γ ≥ C.

It follows that

(2.4) ‖P ∗a,γfvΓ(·, t)‖L2(R) ≥ C

uniformly v. Hence, by estimates (2.2) and (2.4), when γ > 1, a ≥ 2 and Γ
satisfies the conditions (A1) for 1

a ≤ σ ≤ 1, x ∈ R and t, t′ ∈ [0, 1], the global

L2 maximal estimate (2.1) does not hold for s < a
4 (1− 1

γ ). Thus, we complete

the proof of Theorem 2.1. �

Hence, to complete the proof of Theorem 1.1, we will prove that the following
result.

Theorem 2.2. Let γ > 1 and a > 1. Assume that Γ satisfies the condition
(A1) for 1

a ≤ σ ≤ 1 and (A2) for x, y ∈ R and t, t′ ∈ [0, 1]. Then

(2.5) ‖P ∗a,γ,Γf‖L2(R) ≤ C‖f‖Hs(R)

holds for s > a
4 (1− 1

γ ).

To prove Theorem 2.2, we need an important lemma (i.e., Lemma 2.3 below),
which plays a key role in proving Theorem 1.1. Lemma 2.3 is based on Lemma
2.1 in [1] and Lemma 2.1 in [5], and its proof given follows a similar strategy
used to prove that Lemma 2.1 in [1] and Lemma 2.1 in [5]. The proof of Lemma
2.3 will be given in Section 3.

Lemma 2.3. Let a > 1. Assume that Γ satisfies the conditions (A1) with
1
a ≤ σ ≤ 1 and (A2) for x, y ∈ R and t, t′ ∈ (0, 1). Assume t(x) : R→ [0, 1] is a

measurable function. Let γ > 1 and if γ < a
a−1 , assume that α < 1

2 . Let µ be a

positive, even and µ ∈ C∞0 (R). If α > 1
2a(1− 1

γ ), then there exists K ∈ L1(R),

such that∣∣∣∣∫
R
ei[(Γ(y,t(y))−Γ(x,t(x)))ξ+(t(y)−t(x))|ξ|a](1+|ξ|2)−

α
2 e−(t(y)γ+t(x)γ)|ξ|aµ

( ξ
N

)
dξ

∣∣∣∣
≤ CK(x− y)

for all x, y ∈ R, and N ∈ N, the constant C > 0 depends only on a, α, σ, γ
and µ.
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Proof of Theorem 2.2. Let t(x) : R→ [0, 1] be a measurable function. Denote

Ta,γ,Γf(x) =

∫
R
eiΓ(x,t(x)ξeit(x)|ξ|ae−t(x)γ |ξ|a f̂(ξ)dξ, f ∈ S(R).

By linearizing the maximal operator, to prove (2.5) it suffices to prove that

(2.6)
∥∥Ta,γ,Γf∥∥L2(R)

≤ C‖f‖Hs(R)

holds for s > 1
4a(1− 1

γ ). Set

Ra,γ,Γg(x) =

∫
R
eiΓ(x,t(x))·ξeit(x)|ξ|ae−t(x)γ |ξ|a(1 + |ξ|2)−s/2g(ξ)dξ, g ∈ S(R).

We first assume the estimate

(2.7) ‖Ra,γ,Γg‖L2(R) ≤ C‖g‖L2(R)

holds and finish the proof of the estimate (2.6). Noticing that Ta,γ,Γf(x) =

Ra,γ,Γ
(
(1 + | · |2)s/2f̂(·)

)
(x), by (2.7) we get

‖Ta,γ,Γg‖L2(R) =

(∫
R

∣∣Ra,γ,Γ((1 + | · |2)s/2f̂(·)
)
(x)
∣∣2dx)1/2

≤ C
(∫

R
(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

= C‖f‖Hs(R).

Thus, to obtain (2.6) it remains to prove (2.7). Taking ρ ∈ C∞0 (R) such that
ρ(x) = 1 if |x| ≤ 1, and ρ(x) = 0 if |x| ≥ 2. For N > 2, let

Ra,γ,Γ,Ng(x) = ρ(
x

N
)

∫
R
eiΓ(x,t(x)·ξeit(x)|ξ|ae−t(x)γ |ξ|aρ(

ξ

N
)(1 + |ξ|2)−s/2g(ξ)dξ.

It is easy to see that the adjoint operator R′a,γ,Γ,N of Ra,γ,Γ,N is given by

R′a,γ,Γ,Nh(ξ)

= (1 + |ξ|2)−s/2ρ(
ξ

N
)

∫
R
ρ(
x

N
)e−iΓ(x,t(x))·ξe−it(x)|ξ|ae−t(x)γ |ξ|ah(x)dx.

By direct calculation, we have
(2.8)
‖R′a,γ,Γ,Nh‖2L2(R)

=

∫
R

(
(1 + |ξ|2)−s/2ρ(

ξ

N
)

∫
R
ρ(
x

N
)e−iΓ(x,t(x))·ξe−it(x)|ξ|ae−t(x)γ |ξ|ah(x)dx

)
×
(

1 + |ξ|2)−s/2ρ(
ξ

N
)

∫
R
ρ(
y

N
)e−iΓ(y,t(y))·ξe−it(y)|ξ|ae−t(y)γ |ξ|ah(y)dy

)
dξ

=:

∫
R

∫
R
KN (x, y)h(x)h(y)dxdy,
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where

KN (x, y) := ρ(
x

N
)ρ(

y

N
)

∫
R
ei[(Γ(y,t(y))−Γ(x,t(x)))ξ+(t(y)−t(x))|ξ|a](1 + |ξ|2)−s

e−(t(y)γ+t(x)γ)|ξ|aρ2
( ξ
N

)
dξ.

Since s > 1
4a(1 − 1

γ ), γ and Γ satisfy the conditions in Lemma 2.3, thus by

Lemma 2.3 we have

(2.9) |KN (x, y)| ≤ CK(x− y),

where K ∈ L1(R). Thus applying Hölder’s inequality and Young’s inequality,
we have

‖R′a,γ,Γ,Nh‖2L2(R) ≤ C
∫
R

∫
R
k(x− y)h(x)h(y)dxdy(2.10)

= C

∫
R
k ∗ h(x)h(x)dx ≤ C‖k ∗ h‖L2(R)‖h‖L2(R)(2.11)

≤ C‖k‖L1‖h‖2L2(R) ≤ C‖h‖
2
L2(R).

Obviously, here the constant C is independent of N. Hence, by duality, and
letting N →∞, we obtain the asserted inequality (2.7).

Summing up above estimates, to complete the proof of Theorem 2.2, it
remains to prove Lemma 2.3. �

3. The proof of Lemma 2.3

Let us begin with recalling a variant of van der Corput’s lemma.

Lemma 3.1 (see [11, p. 309–312]). Assume that a < b and set I = [a, b]. Let
F ∈ C∞(I) be real-valued and assume that ψ ∈ C∞(I).

(i) Assume that |F ′(x)| ≥ λ > 0 for x ∈ I and that F ′ is monotonic on I.
Then ∣∣∣∣ ∫ b

a

eiF (x)ψ(x)dx

∣∣∣∣ ≤ C 1

λ
{|ψ(b)|+

∫ b

a

|ψ′(x)|dx},

where C does not depend on F , ψ or I.
(ii) Assume that |F ′′(x)| ≥ λ > 0 for x ∈ I. Then∣∣∣∣ ∫ b

a

eiF (x)ψ(x)dx

∣∣∣∣ ≤ C 1

λ1/2
{|ψ(b)|+

∫ b

a

|ψ′(x)|dx},

where C does not depend on F , ψ or I.

We now return to the proof of Lemma 2.3. Define

I=

∫
R
ei[(Γ(y,t(y))−Γ(x,t(x)))ξ+(t(y)−t(x))|ξ|a](1+|ξ|2)−

α
2 e−(t(y)γ+t(x)γ)|ξ|aµ

( ξ
N

)
dξ.

Without loss of generality, we may assume x 6= y and t(y)− t(x) > 0. Define

F (ξ) = (Γ(y, t(y))− Γ(x, t(x)))ξ + (t(y)− t(x))|ξ|a
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and

ψ(ξ) = (1 + |ξ|2)−
α
2 e−(t(y)γ+t(x)γ)|ξ|aµ

( ξ
N

)
.

We rewrite

I =

∫
R
eiF (ξ)ψ(ξ).

To prove Lemma 2.3 it suffices to prove that

(3.1) |I| ≤ CK(x− y),

where K ∈ L1(R), C > 0 may depend on γ, α, a, σ, and µ, but not on x,
y, t(x), t(y) or N. Let M = max{2δ1−a, 1

C4
}, where C4 and δ are both small

positive constants, such that

C4 ≤ min
{ C2

4C1
,
C2

8a
,

1

2

}
and δ <

1

2
(
C2

4a
)

1
a−1 .(3.2)

Now, we divide the verification of (3.1) into two cases |x−y| ≤M and |x−y| >
M according to the value of |x− y|.

3.1. Proof of (3.1) when |x− y| ≤M

Rewrite

I =

∫
|ξ|≤|x−y|−1

eiF (ξ)ψ(ξ)dξ +

∫
|ξ|≥|x−y|−1

eiF (ξ)ψ(ξ)dξ =: I1 + I2.

Thus, to get (3.1) it suffices to give the following estimates:

(3.3) |I1| ≤ CK(x− y)

and

(3.4) |I2| ≤ CK(x− y),

where K ∈ L1(R), the constant C is independent on x, y, t(x), t(y) and N.
The estimate of (3.3) is simple. Note that |x − y|−1 ≥ 1

M by |x − y| ≤ M,
µ ∈ C∞0 (R) and 1− α < 1. We have

|I1| ≤
∫
|ξ|≤|x−y|−1

(1 + |ξ|2)−
α
2 dξ

≤
∫
|ξ|≤ 1

M

(1 + |ξ|2)−
α
2 dξ +

∫
1
M≤|ξ|≤|x−y|−1

(1 + |ξ|2)−
α
2 dξ

≤ 2

M
+

∫
1
M≤|ξ|≤|x−y|−1

|ξ|−αdξ

≤ C
(
1 +

1

|x− y|1−α
)
≤ CK(x− y),

where K(x) =
(
1 + 1

|x|1−α
)
χ{|x|≤M} and K ∈ L1(R). As for (3.4), it suffices to

show that the following estimates:

(3.5)

∣∣∣∣ ∫ ∞
|x−y|−1

eiF (ξ)ψ(ξ)dξ

∣∣∣∣ ≤ CK(x− y)
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and

(3.6)

∣∣∣∣ ∫ −|x−y|−1

−∞
eiF (ξ)ψ(ξ)dξ

∣∣∣∣ ≤ CK(x− y),

where K ∈ L1(R), the constant C is independent on x, y, t(x), t(y) and N. By
symmetry, it will suffice to verify the estimate (3.5). We choose C4 > 0 such
that

C4 ≤ min
{ C2

4C1
,
C2

8a
,

1

2

}
.(3.7)

Case (I-a):
(
t(y)− t(x)

)σ ≥ C4|x− y|. Note that ξ ≥ |x− y|−1 > 0. We have

F ′(ξ) = Γ(y, t(y))− Γ(x, t(x)) + a(t(y)− t(x))ξa−1

and
F ′′(ξ) = a(a− 1)(t(y)− t(x))ξa−2.

To verify (3.5), we need the following estimate:

(3.8) max
ξ≥|x−y|−1

|ψ(ξ)|+
∫ ∞
|x−y|−1

|ψ′(ξ)|dξ ≤ C|x− y|α.

For each ε > 0, define function hε(ξ) = e−ε|ξ|
a

. For ξ 6= 0, we have

(3.9) |h′ε(ξ)| ≤ C
1

|ξ|
and

(3.10) |h′′ε (ξ)| ≤ C 1

|ξ|2
.

In fact, since h′ε(ξ) = −sgn(ξ)εa|ξ|a−1e−ε|ξ|
a

, it follows that

|h′ε(ξ)| ≤
a

|ξ|
max
y∈R+

ye−y ≤ C 1

|ξ|
,

|h′′ε (ξ)| ≤ 1

|ξ|2
max
y∈R+

ye−y +
1

|ξ|2
max
y∈R+

y2e−y ≤ C 1

|ξ|2
.

Thus, let hε0(ξ) = e−ε0|ξ|
a

, where ε0 = t(y)γ + t(x)γ . It follows that ψ(ξ) =

(1 + |ξ|2)−
α
2 hε0(ξ)µ

(
ξ
N

)
, µ ∈ C∞0 (R) and α > 0. For ξ ≥ |x− y|−1, we obtain

(3.11) |ψ(ξ)| ≤ (1 + |ξ|2)−
α
2 ≤ |x− y|α.

On the other hand, since

ψ′(ξ) = 2ξ(−α
2

)(1 + ξ2)−
α
2−1hε0(ξ)µ

( ξ
N

)
+ (1 + ξ2)−

α
2 h′ε0(ξ)µ

( ξ
N

)
+ (1 + ξ2)−

α
2 hε0(ξ)

1

N
µ′
( ξ
N

)
.

By (3.9) and µ ∈ C∞0 (R), we get

|ψ′(ξ)| ≤ αξ(1 + ξ2)−
α
2−1hε0(ξ)µ

( ξ
N

)
+ (1 + ξ2)−

α
2 |h′ε0(ξ)|µ

( ξ
N

)
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+ (1 + ξ2)−
α
2 hε0(ξ)

1

N
|µ′
( ξ
N

)
|

≤ Cξ−α−1 + ξ−α−1 ξ

N
|µ′
( ξ
N

)
|

≤ Cξ−α−1.

Hence, we have∫ ∞
|x−y|−1

|ψ′(ξ)|dξ ≤
∫ ∞
|x−y|−1

ξ−α−1dξ ≤ C|x− y|α.(3.12)

Thus, (3.8) follows from (3.11) and (3.12).
Now, we verify the estimate (3.5). We choose a positive constant C5 such

that

C5 > max
{ 1

C4

(2(C3 + C1C4)

aC4

) 1
a−1

, 1
}
.

We rewrite
(3.13)∫ ∞
|x−y|−1

eiF (ξ)ψ(ξ)dξ =

∫ C5|x−y|−1

|x−y|−1

eiF (ξ)ψ(ξ)dξ +

∫ ∞
C5|x−y|−1

eiF (ξ)ψ(ξ)dξ

=: L1 + L2.

The estimate of L1 is simple. Note that µ ∈ C∞0 (R). It follows that

(3.14) |L1| ≤
∫ C5|x−y|−1

|x−y|−1

(1 + |ξ|2)−
α
2 dξ ≤ C 1

|x− y|1−α
.

Next we give estimate of L2. Since ξ ≥ C4C5

(
t(y)− t(x)

)−σ
by ξ ≥ C5|x−y|−1

and
(
t(y)− t(x)

)σ ≥ C4|x− y|. And note that 0 < t(y)− t(x) < 1, aσ ≥ 1 and

C5 > max
{ 1

C4

(2(C3 + C1C4)

aC4

) 1
a−1

, 1
}
.

Thus, for ξ ∈ [C5|x− y|−1,∞), we obtain

a
(
t(y)− t(x)

)
ξa−1 ≥ a

(
t(y)− t(x)

)
(C4C5)a−1

(
t(y)− t(x)

)−aσ+σ

= a(C4C5)a−1
(
t(y)− t(x)

)1−aσ+σ

≥ a(C4C5)a−1
(
t(y)− t(x)

)σ
≥ 2
(C3

C4
+ C1

)(
t(y)− t(x)

)σ
.(3.15)

Since |x − y| < 1
C4

(
t(y) − t(x)

)σ
by
(
t(y) − t(x)

)σ
> C4|x − y| and Γ satisfies

the conditions (A1) for 1
a ≤ σ ≤ 1 and (A2). We have∣∣Γ(y, t(y))− Γ(x, t(x))
∣∣ ≤ ∣∣Γ(y, t(y))− Γ(x, t(y))

∣∣+
∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
≤ C3|x− y|+ C1

(
t(y)− t(x)

)σ
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≤
(C3

C4
+ C1

)(
t(y)− t(x)

)σ
.(3.16)

Thus, by (3.15), (3.16) and
(
t(y)− t(x)

)σ
> C4|x− y|, we get

|F ′(ξ)| ≥ a
(
t(y)− t(x)

)
ξa−1 −

∣∣Γ(y, t(y))− Γ(x, t(x))|

≥
(C3

C4
+ C1

)(
t(y)− t(x)

)σ
≥
(
C3 + C1C4

)
|x− y|.(3.17)

Observe that F ′ is monotonic on [|x − y|−1,∞). Applying (i) of Lemma 3.1
with (3.17) and (3.8), we obtain

(3.18) |L2| ≤ C|x− y|−1|x− y|α = C
1

|x− y|1−α
.

Hence, (3.5) holds from (3.13), (3.14) and (3.18).

Case (I-b):
(
t(y) − t(x)

)σ
< C4|x − y|. Let ρ =

( |x−y|
t(y)−t(x)

) 1
a−1 . We choose

δ, λ > 0 such that δ < 1
2 (C2

4a )
1
a−1 and

λ ≥ max
{

2
(2(C3 + C1C4)

a

) 1
a−1

, 4(
C2

4a
)

1
a−1

}
.

Denote

B1 =
{
ξ ≥ |x− y|−1 : ξ ≤ δρ

}
,

B2 =
{
ξ ≥ |x− y|−1 : δρ ≤ ξ ≤ λρ

}
,

B3 =
{
ξ ≥ |x− y|−1 : ξ ≥ λρ

}
.

Hence, we may write∫ ∞
|x−y|−1

eiF (ξ)ψ(ξ)
)
dξ =

∫
B1

eiF (ξ)ψ(ξ)dξ+

∫
B2

eiF (ξ)ψ(ξ)dξ+

∫
B3

eiF (ξ)ψ(ξ)dξ

=: I2,1 + I2,2 + I2,3.(3.19)

We first consider I2,1. For ξ ∈ B1, we obtain

a
(
t(y)− t(x)

)
ξa−1 ≤ aδa−1|x− y| ≤ C2|x− y|

4
.(3.20)

Because C4 ≤ C2

4C1
,
(
t(y) − t(x)

)σ
< C4|x − y| and Γ satisfies the conditions

(A1) for 1
a ≤ σ ≤ 1 and (A2). We have∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≥ ∣∣Γ(y, t(y))− Γ(x, t(y))
∣∣− ∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
≥ C2|x− y| − C1

∣∣t(y)− t(x)
∣∣σ

≥ C2|x− y| − C1C4|x− y| ≥
3C2

4
|x− y|.(3.21)
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By (3.20) and (3.21), we get

(3.22) |F ′(ξ)| ≥
∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣− a(t(y)− t(x)
)
ξa−1 ≥ C2

2
|x− y|.

Since that ξ > 0, and t(y) − t(x) > 0, it follows that F ′ is monotonic on
[|x− y|−1,∞). Thus, applying (i) of Lemma 3.1 with (3.22) and (3.8), we get

(3.23) |I2,1| ≤ C|x− y|−1|x− y|α = C
1

|x− y|1−α
.

For I2,3, by ξ ∈ B3 and a > 1, and λ ≥
(

2(C3+C1C4)
a

) 1
a−1

, we have

a
(
t(y)− t(x)

)
ξa−1 ≥ aλa−1|x− y| ≥ 2

(
C3 + C1C4

)
|x− y|.(3.24)

Note that
(
t(y) − t(x)

)σ
< C4|x − y| and Γ satisfies the conditions (A1) for

1
a ≤ σ ≤ 1 and (A2). We have∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≤ ∣∣Γ(y, t(y))− Γ(x, t(y))
∣∣+
∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
≤ C3|x− y|+ C1

(
t(y)− t(x)

)σ
≤
(
C3 + C1C4

)
|x− y|.(3.25)

Thus, we get from (3.24) and (3.25)
(3.26)

|F ′(ξ)| ≥ a
(
t(y)− t(x)

)
ξa−1 −

∣∣Γ(y, t(y))− Γ(x, t(x))| ≥
(
C3 + C1C4

)
|x− y|.

Since F ′ is monotonic on [|x−y|−1,∞). Applying (i) of Lemma 3.1 with (3.26)
and (3.8), we obtain

(3.27) |I2,3| ≤ C|x− y|−1|x− y|α = C
1

|x− y|1−α
.

Finally, we give estimate of I2,2. One hand,
(
t(y)− t(x)

)aσ
< (C4)a|x− y|a.

On the other hand, by t(x), t(y) ∈ [0, 1], 1
a ≤ σ ≤ 1 and a > 1, we have(

t(y)− t(x)
)aσ ≤ t(y)− t(x).

Assume that t(y) − t(x) ≥ (C4)a|x − y|a. Thus, for ξ ∈ B2, by F ′′(ξ) = a(a −
1)
(
t(y)− t(x)

)
ξa−2, we get

|F ′′(ξ)| ≥ C
(
t(y)− t(x)

)( |x− y|
t(y)− t(x)

) a−2
a−1

= C
(
t(y)− t(x)

) 1
a−1 |x− y|

a−2
a−1

≥ C|x− y|
a
a−1 |x− y|

a−2
a−1 = C|x− y|2.(3.28)

Thus, using (ii) of Lemma 3.1 with the estimates (3.28) and (3.8), we obtain

|I2,2| ≤ C(|x− y|2)−
1
2 |x− y|α = C

1

|x− y|1−α
.
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If t(y)− t(x) < (C4)a|x− y|a, then |F ′′(ξ)| ≥ a(a− 1)
(
t(y)− t(x)

)
ξa−2. Thus,

for ξ ∈ B2, we have

(3.29)
|F ′′(ξ)| ≥ a(a− 1)δa−2

(
t(y)− t(x)

)( |x− y|
t(y)− t(x)

) a−2
a−1

= C
(
t(y)− t(x)

) 1
a−1 |x− y|

a−2
a−1 .

We first give the following estimate:

(3.30) max
ξ∈B2

|ψ(ξ)|+
∫
B2

|ψ′(ξ)|dξ ≤ C
(
|x− y|

t(y)− t(x)

) −α
a−1

.

In fact, for ξ ∈ B2, we obtain

(3.31) |ψ(ξ)| ≤ (1 + |ξ|2)−
α
2 ≤ C

(
|x− y|

t(y)− t(x)

) −α
a−1

.

On the other hand, since

(3.32) |ψ′(ξ)| ≤ Cρ−α|h′ε0(ξ)|+ Cρ−α−1|hε0(δρ)|.

Here, hε0(ξ) = e−ε0|ξ|
a

, where ε0 = t(y)γ + t(x)γ . Hence, we have∫
ξ∈B2

|ψ′(ξ)|dξ ≤ Cρ−α
∫ λρ

δρ

|h′ε(ξ)|dξ +

∫ λρ

δρ

ρ−α−1|hε(δρ)|dξ

= −Cρ−α
∫ λρ

δρ

h′ε(ξ)dξ +

∫ λρ

δρ

ρ−α−1|hε(δρ)|dξ

≤ Cρ−αe−δ
a(t(y)γ+t(x)γ)ρa ≤ C

(
|x− y|

t(y)− t(x)

) −α
a−1

.(3.33)

Thus, (3.30) follows from (3.31) and (3.33). Applying (ii) of Lemma 3.1 with
(3.29) and (3.30), we obtain

|I2,2| ≤ C
((
t(y)− t(x)

) 1
a−1 |x− y|

a−2
a−1

)− 1
2
(
|x− y|

t(y)− t(x)

) −α
a−1

= C
(
t(y)− t(x)

) 1
a−1 (α− 1

2 )|x− y|
1
a−1 (1− a2−α).(3.34)

In case γ ≥ a
a−1 , it is necessary α > 1

2 . Note that t(y) − t(x) < (C4)a|x − y|a

and α > 1
2 , a > 1. Thus by (3.34), we get

(3.35) |I2,2| ≤ C|x− y|
a
a−1 (α− 1

2 )|x− y|
1
a−1 (1− a2−α) = C

1

|x− y|1−α
.

In case γ < a
a−1 . Note that the following estimate:

(3.36) max
ξ∈B2

|ψ(ξ)|+
∫
B2

|ψ′(ξ)|dξ ≤ Cρ−αe−δ
a(t(y)γ+t(x)γ)ρa .
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In fact, for ξ ∈ B2, we obtain

(3.37) |ψ(ξ)| ≤ (1 + |ξ|2)−
α
2 ≤ Cρ−αe−δ

a(t(y)γ+t(x)γ)ρa .

Thus, (3.36) follows from (3.37) and (3.33). Applying (ii) of Lemma 3.1 with
(3.29) and (3.36), we obtain

|I2,2| ≤ C

((
t(y)− t(x)

) 1
a−1 |x− y|

a−2
a−1

)− 1
2

ρ−αe−δ
a(t(y)γ+t(x)γ)ρa

= C
(
t(y)− t(x)

) 1
a−1 (α− 1

2 )|x− y|
1
a−1 (1− a2−α)

e−δ
a(t(x)γ+t(y)γ)|x−y|

a
a−1

(
t(y)−t(x)

)− a
a−1

.

Since
t(x)γ + t(y)γ ≥ 2−γ

(
t(x) + t(y)

)γ ≥ 2−γ
(
t(y)− t(x)

)γ
.

Thus, we have
(3.38)

|I2,2|≤C
(
t(y)−t(x)

) 1
a−1 (α− 1

2 )|x−y|
1
a−1 (1− a2−α)e−δ

a2−γ
(
t(y)−t(x)

)γ− a
a−1 |x−y|

a
a−1

.

Because for any y, β > 0, the inequality e−y ≤ Cβy−β holds, it follows that

|I2,2| ≤ C
(
t(y)− t(x)

) 1
a−1 (α− 1

2 )|x− y|
1
a−1 (1− a2−α)(

t(y)− t(x)
)−β(γ− a

a−1 )|x− y|−
βa
a−1

= C

(
t(y)− t(x)

) 1
a−1 (α− 1

2 )(
t(y)− t(x)

)β(γ− a
a−1 )

1

|x− y|
1
a−1 (α+ 1

2 (a−2)+βa)
.

We choose β such that 1
a−1 (α − 1

2 ) = β(γ − a
a−1 ), that is β =

α− 1
2

(a−1)γ−a . Note

that β > 0 by γ < a
a−1 and α < 1

2 . Let

k =
1

a− 1
(α+

1

2
(a− 2) + βa) =

1

a− 1

(
α+

1

2
(a− 2) +

a(α− 1
2 )

(a− 1)γ − a

)
,

and rewrite

k =
1

a− 1

(
α

(
(a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)−

1
2a

(a− 1)γ − a

)
.

Noting that α > 1
2a(1− 1

γ ) and (a−1)γ
(a−1)γ−a < 0 by γ < a

a−1 , it follows that

k <
1

a− 1

(
1

2
a(1− 1

γ
)

(
(a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)−

1
2a

(a− 1)γ − a

)
= 1.

Thus, there exist k < 1, such that

|I2,2| ≤ C
1

|x− y|k
.

Thus, the estimate (3.5) follows from estimates (3.19), (3.23), (3.27) and (3.35)
for the case |x− y| ≤M .
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3.2. Proof of (3.1) when |x− y| > M

We recall that

ρ =

(
|x− y|

t(y)− t(x)

) 1
a−1

and C4 ≤ min
{ C2

4C1
,
C2

8a
,

1

2

}
,

and

0 < δ≤
1

2
(
C2

4a
)

1
a−1 and λ ≥ max

{
2
(2(C3 + C1C4)

a

) 1
a−1

, 4(
C2

4a
)

1
a−1

}
.

When |x−y| > M, note that δρ > 1 by M = max{2δ1−a, 1
C4
}. Define φ0 ∈ S(R)

such that suppφ0 ⊂ [−1, 1] and φ0(ξ) = 1 if |ξ| ≤ 1
2 . And define φ2 ∈ S(R)

such that suppφ2 ⊂ [δρ, λρ] and φ2(ξ) = 1 if ξ ∈ [2δρ, 1
2λρ]. Since the supports

of φ0 and φ2 do not overlap. Define φ1 := (1 − φ2 − φ0)χ[ 1
2 ,2δρ]

and φ3 :=

(1− φ2)χ[ 1
2λρ,∞). Thus

ψ(ξ) = ψ(ξ)φ0(ξ) + ψ(ξ)φ1(ξ) + ψ(ξ)φ2(ξ) + ψ(ξ)φ3(ξ) :=

3∑
j=0

ψj(ξ),

where ψj(ξ) = ψj(ξ)φj(ξ), j = 0, 1, 2, 3. Let Ij represent the support of ψj , so
that

I0 = [−1, 1], I1 = [
1

2
, 2δρ], I2 = [δρ, λρ], I3 = [

1

2
λρ,∞).

To estimate
∫
R = eiF (ξ)ψ(ξ)dξ, by symmetry, it will suffice to estimate

Lj =

∫
Ij

eiF (ξ)ψj(ξ)dξ

for each j = 0, 1, 2, 3. Integrating by parts twice, we have

L0 ≤
1∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣2
∫ 1

−1

∣∣∣∣ d2

dξ2
(ei(t(y)−t(x))|ξ|aψ0(ξ))

∣∣∣∣dξ.
Since |x − y| > 1

C4
by |x − y| > M, M = max{2δ1−a, 1

C4
} and C4 ≤ C2

4C1
. It

follows that
(
t(y)− t(x)

)σ
< C4|x− y|. Noting that Γ satisfying the conditions

(A1) for 1
a ≤ σ ≤ 1 and (A2), it follows that∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≥ ∣∣Γ(y, t(y))− Γ(x, t(y))
∣∣− ∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
≥ C2|x− y| − C1

(
t(y)− t(x)

)σ
≥ C2|x− y| − C1C4|x− y| ≥

3C2

4
|x− y|.(3.39)

Observe that the following fact in [1]∫ 1

−1

∣∣∣∣ d2

dξ2
(ei(t(y)−t(x))|ξ|aψ0(ξ))

∣∣∣∣dξ ≤ C.
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Thus, by (3.39), we get

L0 ≤
1∣∣x− y∣∣2 .

By direct calculation,

F ′(ξ) = Γ(y, t(y))− Γ(x, t(x)) + a(t(y)− t(x))ξa−1,

F ′′(ξ) = a(a− 1)(t(y)− t(x))ξa−2,

and
F ′′′(ξ) = a(a− 1)(a− 2)(t(y)− t(x))ξa−3.

For j = 1, 3, we have

|Lj | =
∣∣∣∣ ∫
Ij

eiF (ξ)
(
−

ψ′′j (ξ)

(F ′(ξ))2
+

2ψ′j(ξ)F
′′(ξ)

(F ′(ξ))3
+
ψj(ξ)F

′′′(ξ)

(F ′(ξ))3
− 3ψj(ξ)(F

′′(ξ))2

(F ′(ξ))4

)
dξ

∣∣∣∣
≤ C

∫
Ij

1

|F ′(ξ)|2

(
|ψ′′j (ξ)|+ |F

′′(ξ)|
|F ′(ξ)|

|ψ′j(ξ)|+
|F ′′′(ξ)|
|F ′(ξ)|

|ψj(ξ)|+
|F ′′(ξ)|2

|F ′(ξ)|2
|ψj(ξ)|

)
dξ.

For ξ ∈ I1, since a > 1, we obtain

a
(
t(y)− t(x)

)
ξa−1 ≤ a2a−1δa−1|x− y| ≤ C2|x− y|

4
.(3.40)

Because C4 ≤ C2

4C1
,
(
t(y) − t(x)

)σ
< C4|x − y| and Γ satisfies the conditions

(A1) for 1
a ≤ σ ≤ 1 and (A2). We have∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≥ ∣∣Γ(y, t(y))− Γ(x, t(y))
∣∣− ∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
≥ C2|x− y| − C1

(
t(y)− t(x)

)σ
≥ C2|x− y| − C1C4|x− y| ≥

3C2

4
|x− y|.(3.41)

By (3.40) and (3.41), for ξ ∈ I1, we get

(3.42) |F ′(ξ)| ≥
∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣− a(t(y)− t(x)
)
ξa−1 ≥ C2

2
|x− y|.

By (3.40) and (3.42), we have

(3.43) |F ′(ξ)| ≥ 2a
(
t(y)− t(x)

)
ξa−1.

For ξ ∈ I3, we obtain

a
(
t(y)− t(x)

)
ξa−1 ≥ a21−aλa−1|x− y|.(3.44)

Since λ ≥ 2
(

2(C3+C1C4)
a

) 1
a−1

, we have

a
(
t(y)− t(x)

)
ξa−1 ≥ a21−aλa−1|x− y| ≥ 2

(
C3 + C1C4

)
|x− y|.(3.45)

Note that
(
t(y) − t(x)

)σ
< C4|x − y| and Γ satisfies the conditions (A1) for

1
a ≤ σ ≤ 1 and (A2). We have∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≤ ∣∣Γ(y, t(y))− Γ(x, t(y))
∣∣+
∣∣Γ(x, t(y))− Γ(x, t(x))

∣∣
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≤ C3|x− y|+ C1

(
t(y)− t(x)

)σ
≤
(
C3 + C1C4

)
|x− y|.(3.46)

Thus, by (3.45) and (3.46), we get
(3.47)
|F ′(ξ)| ≥ a

(
t(y)− t(x)

)
ξa−1 −

∣∣Γ(y, t(y))− Γ(x, t(x))| ≥
(
C3 + C1C4

)
|x− y|.

By (3.45) and (3.46), we have

(3.48)
∣∣Γ(y, t(y))− Γ(x, t(x))

∣∣ ≤ a

2

(
t(y)− t(x)

)
ξa−1.

Thus
(3.49)

|F ′(ξ)| ≥ a
(
t(y)− t(x)

)
ξa−1 −

∣∣Γ(y, t(y))− Γ(x, t(x)) ≥ a

2

(
t(y)− t(x)

)
ξa−1.

Thus for ξ ∈ I1 or ξ ∈ I3, we have

|F ′′(ξ)|
|F ′(ξ)|

≤ Cξ−1 and
|F ′′′(ξ)|
|F ′(ξ)|

≤ Cξ−2.

For j = 1 or j = 3, we get

|Lj | ≤ C
1

|x− y|2

∫
Ij

(
|ψ′′j (ξ)|+ |ξ|−1|ψ′j(ξ)|+ 2|ξ|−2|ψj(ξ)|

)
dξ.

Note that

ψj(ξ) = (1 + |ξ|2)−
α
2 e−(t(y)γ+t(x)γ)|ξ|aµ

( ξ
N

)
φj(ξ).

Hence, for j = 1, 2, 3, by estimate (3.9) and (3.10), we get

|ψj(ξ)| ≤ C
1

|ξ|α
, |ψ′j(ξ)| ≤ C

1

|ξ|α+1
, and |ψ′′j (ξ)| ≤ C 1

|ξ|α+2
.

Thus, for j = 1, 3, we get

|Lj | ≤ C
1

|x− y|2

∫
Ij

1

|ξ|α
dξ ≤ C 1

|x− y|2
.

Finally, we give estimate of L2. For ξ ∈ I2, we have

(3.50)
|F ′′(ξ)| ≥ a(a− 1)δa−2

(
t(y)− t(x)

)( |x− y|
t(y)− t(x)

) a−2
a−1

= C
(
t(y)− t(x)

) 1
a−1 |x− y|

a−2
a−1 .

And the estimate

(3.51) max
ξ∈I2
|ψ2(ξ)|+

∫
I2

|ψ′2(ξ)|dξ ≤ Cρ−αe−δ
a(t(y)γ+t(x)γ)ρa .

Thus, similar to estimating (3.38), by (3.50) and (3.51), we have

|L2| ≤ C
(
t(y)− t(x)

) 1
a−1 (α− 1

2 )|x− y|
1
a−1 (−α− 1

2 (a−2))

e−δ
a2−γ

(
t(y)−t(x)

)γ− a
a−1 |x−y|

a
a−1

.
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When γ = a
a−1 , since α > 1

2 and α+ 1
2 (a− 2) > 0. We have

|L2| ≤ Ce−δ
a2−γ |x−y|

a
a−1 ≤ C 1

|x− y|
a
a−1

.

Note that for any y, β > 0, the inequality e−y ≤ Cβy−β holds. We have

|L2| ≤ C
(
t(y)− t(x)

) 1
a−1 (α− 1

2 )(
t(y)− t(x)

)β(γ− a
a−1 )

1

|x− y|
1
a−1 (α+ 1

2 (a−2)+βa)
.(3.52)

When γ < a
a−1 , we rewrite (3.52) as

|L2| ≤ C
(
t(y)− t(x)

)β( a
a−1−γ)(

t(y)− t(x)
) 1
a−1 ( 1

2−α)

1

|x− y|
1
a−1 (α+ 1

2 (a−2)+βa)
.(3.53)

Since t(y)− t(x) < 1, γ < a
a−1 and α < 1

2 . Hence, we choose a positive constant

β such that β( a
a−1 − γ) > 1

a−1 ( 1
2 − α) and 1

a−1 (α+ 1
2 (a− 2) + βa) > 1. Thus,

by (3.53), there exists k > 1, such that

|L2| ≤ C
(
t(y)− t(x)

)β( a
a−1−γ)(

t(y)− t(x)
) 1
a−1 ( 1

2−α)

1

|x− y|
1
a−1 (α+ 1

2 (a−2)+βa)
≤ C 1

|x− y|k
.

When γ > a
a−1 , we choose β such that 1

a−1 (α − 1
2 ) = β(γ − a

a−1 ), that is

β =
α− 1

2

(a−1)γ−a , noting that β > 0 by γ > a
a−1 and α > 1

2 . Let

k =
1

a− 1
(α+

1

2
(a− 2) + βa) =

1

a− 1

(
α+

1

2
(a− 2) +

a(α− 1
2 )

(a− 1)γ − a

)
,

and rewrite

k =
1

a− 1

(
α

(
(a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)−

1
2a

(a− 1)γ − a

)
.

Since α > 1
2a(1− 1

γ ) and (a−1)γ
(a−1)γ−a > 0 by γ > a

a−1 , it follows that

k >
1

a− 1

(
1

2
a(1− 1

γ
)

(
(a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)−

1
2a

(a− 1)γ − a

)
= 1.

Thus, there exists k > 1, such that

|I2,2| ≤ C
1

|x− y|k
.

Summing up above all estimates, we complete the proof of estimate (3.5).
Hence, we show (3.4) and complete the proof of Lemma 2.3.
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4. Proof of Theorem 1.3.

Now, we prove Theorem 1.3 by considering the two cases 1 < γ < a
a−1 and

γ ≥ a
a−1 according to the value of γ, separately.

Case (I): 1 < γ < a
a−1 . In this case, we will prove sloca,Γ(γ) = a

4 (1− 1
γ ). Since

‖P ∗a,γ,Γf‖L2([−1,1]) ≤ ‖P ∗a,γ,Γf‖L2(R),

the global bounds (1.9) from Theorem 1.1 imply some local bounds in (1.10),
and it is thus necessarily the case that sloca,Γ(γ) ≤ sa,Γ(γ) = a

4 (1 − 1
γ ). On the

other hand, we may obtain sloca,Γ(γ) ≥ a
4 (1− 1

γ ) for all 1 < γ < a
a−1 . In fact, we

note that the counterexample given in Section 2 is also a counterexample for
the local estimate (1.10) whenever the choices x are contained within [−1, 1].

Since x is chosen to be in [0, v
2a
γ −2(a−1)] for some small ν, and note that

2a
γ −2(a−1) ≥ 0 by 1 < γ < a

a−1 . Hence, sloca,Γ(γ) = a
4 (1− 1

γ ) for all 1 < γ < a
a−1 .

Case (II): γ ≥ a
a−1 . In this case, we will prove sloca,Γ(γ) = 1

4 . In the proof of

Lemma 2.3, when γ ≥ a
a−1 , and x is small, that is |x| ≤M (M ≥ 1), the only

requirement on α with α ≥ 1
2 . Thus, for such γ, sloca,Γ(γ) ≤ 1

4 . On the other

hand, sloca,Γ(γ) ≥ 1
4 for all γ ≥ a

a−1 can be deduced from the counterexample
of Section 2 in case γ = a

a−1 . In fact, note that 0 < t < 1 , so the function

Gt,v(η) from Section 2 is non-increasing in γ the counterexample for γ = a
a−1 ,

which shows that sloca,Γ( a
a−1 ) ≥ 1

4 . Thus, for all γ ≥ a
a−1 , s

loc
a,Γ(γ) ≥ 1

4 . Thus,

sloca,Γ(γ) = 1
4 for all γ ≥ a

a−1 . Hence we complete the proof of Theorem 1.3.
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