• Title/Summary/Keyword: '(le)'

Search Result 2,980, Processing Time 0.031 seconds

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.

Dronedarone hydrochloride enhances the bioactivity of endothelial progenitor cells via regulation of the AKT signaling pathway

  • Zhang, Jian;Le, Thi Hong Van;Rethineswaran, Vinoth Kumar;Kim, Yeon-Ju;Jang, Woong Bi;Ji, Seung Taek;Ly, Thanh Truong Giang;Ha, Jong Seong;Yun, Jisoo;Cheong, Jae Hun;Jung, Jinsup;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.459-466
    • /
    • 2021
  • Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

Current Perspectives on the Effects of Plant Growth-promoting Rhizobacteria (식물생장촉진 근권미생물의 영향에 대한 연구 현황 및 전망)

  • Le, Thien Tu Huynh;Jun, Sang Eun;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1281-1293
    • /
    • 2019
  • The rhizosphere is the active zone where plant roots communicate with the soil microbiome, each responding to the other's signals. The soil microbiome within the rhizosphere that is beneficial to plant growth and productivity is known as plant growth-promoting rhizobacteria (PGPR). PGPR take part in many pivotal plant processes, including plant growth, development, immunity, and productivity, by influencing acquisition and utilization of nutrient molecules, regulation of phytohormone biosynthesis, signaling, and response, and resistance to biotic- and abiotic-stresses. PGPR also produce secondary compounds and volatile organic compounds (VOCs) that elicit plant growth. Moreover, plant roots exude attractants that cause PGPR to aggregate in the rhizosphere zone for colonization, improving soil properties and protecting plants against pathogenic factors. The interactions between PGPR and plant roots in rhizosphere are essential and interdependent. Many studies have reported that PGPR function in multiple ways under the same or diverse conditions, directly and indirectly. This review focuses on the roles and strategies of PGPR in enhancing nutrient acquisition by nutrient fixation/solubilization/mineralization, inducing plant growth regulators/phytohormones, and promoting growth and development of root and shoot by affecting cell division, elongation, and differentiation. We also summarize the current knowledge of the effects of PGPR and the soil microbiota on plants.

Detection and Identification of Moving Objects at Busy Traffic Road based on YOLO v4 (YOLO v4 기반 혼잡도로에서의 움직이는 물체 검출 및 식별)

  • Li, Qiutan;Ding, Xilong;Wang, Xufei;Chen, Le;Son, Jinku;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.141-148
    • /
    • 2021
  • In some intersections or busy traffic roads, there are more pedestrians in a specific period of time, and there are many traffic accidents caused by road congestion. Especially at the intersection where there are schools nearby, it is particularly important to protect the traffic safety of students in busy hours. In the past, when designing traffic lights, the safety of pedestrians was seldom taken into account, and the identification of motor vehicles and traffic optimization were mostly studied. How to keep the road smooth as far as possible under the premise of ensuring the safety of pedestrians, especially students, will be the key research direction of this paper. This paper will focus on person, motorcycle, bicycle, car and bus recognition research. Through investigation and comparison, this paper proposes to use YOLO v4 network to identify the location and quantity of objects. YOLO v4 has the characteristics of strong ability of small target recognition, high precision and fast processing speed, and sets the data acquisition object to train and test the image set. Using the statistics of the accuracy rate, error rate and omission rate of the target in the video, the network trained in this paper can accurately and effectively identify persons, motorcycles, bicycles, cars and buses in the moving images.

Overall Prevalence and Distribution of Knockdown Resistance (kdr) Mutations in Aedes aegypti from Mandalay Region, Myanmar

  • Naw, Haung;Su, Mya Nilar Chaw;Vo, Tuan Cuong;Le, Huong Giang;Kang, Jung-Mi;Jun, Hojong;Mya, Yi Yi;Myint, Moe Kyaw;Lee, Jinyoung;Sohn, Woon-Mok;Kim, Tong-Soo;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.709-714
    • /
    • 2020
  • Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.

Analysis of Future Demand and Utilization of the Urban Meteorological Data for the Smart City (스마트시티를 위한 도시기상자료의 미래수요 및 활용가치 분석)

  • Kim, Seong-Gon;Kim, Seung Hee;Lim, Chul-Hee;Na, Seong-Kyun;Park, Sang Seo;Kim, Jaemin;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.241-249
    • /
    • 2021
  • A smart city utilizes data collected from various sensors through the internet of things (IoT) and improves city operations across the urban area. Recently substantial research is underway to examine all aspects of data that requires for the smart city operation. Atmospheric data are an essential component for successful smart city implementation, including Urban Air Mobility (UAM), infrastructure planning, safety and convenience, and traffic management. Unfortunately, the current level of conventional atmospheric data does not meet the needs of the new city concept. New and innovative approaches to developing high spatiotemporal resolution of observational and modeling data, resolving the complex urban structure, are expected to support the future needs. The geographic information system (GIS) integrates the atmospheric data with the urban structure and offers information system enhancement. In this study we proposed the necessity and applicability of the high resolution urban meteorological dataset based on heavy fog cases in the smart city region (e.g., Sejong and Pusan) in Korea.

Mitochondrial DNA variation and phylogeography of Old World camels

  • Ming, Liang;Siren, Dalai;Yi, Li;Hai, Le;He, Jing;Ji, Rimutu
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.525-532
    • /
    • 2021
  • Objective: Old World camels are a valuable genetic resource for many countries around the world due to their adaptation to the desert environment. At present, Old World camels have encountered the challenge of unprecedented loss of genetic resources. Through our research, we would reveal the population structure and genetic variation in Old World camel populations, which provides a theoretical basis for understanding the germplasm resources and origin and evolution of different Old World camel populations. Methods: In the present study, we assessed mtDNA control region sequences of 182 individuals from Old World camels to unravel genetic diversity, phylogeography, and demographic dynamics. Results: Thirty-two haplotypes confirmed by 54 polymorphic sites were identified in the 156 sequences, which included 129 domestic and 27 wild Bactrian camels. Meanwhile, 14 haplotypes were defined by 47 polymorphic sites from 26 sequences in the dromedaries. The wild Bactrian camel population showed the lowest haplotype and nucleotide diversity, while the dromedaries investigated had the highest. The phylogenetic analysis suggests that there are several shared haplotypes in different Bactrian camel populations, and that there has been genetic introgression between domestic Bactrian camels and dromedaries. In addition, positive values of Tajima's D and Fu's Fs test demonstrated a decrease in population size and/or balancing selection in the wild Bactrian camel population. In contrast, the negative values of Tajima's D and Fu's Fs test in East Asian Bactrian camel populations explained the demographic expansion and/or positive selection. Conclusion: In summary, we report novel information regarding the genetic diversity, population structure and demographic dynamics of Old World camels. The findings obtained from the present study reveal that abundant genetic diversity occurs in domestic Bactrian camel populations and dromedaries, while there are low levels of haplotype and nucleotide diversity in the wild Bactrian camel population.