Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.2.241

Analysis of Future Demand and Utilization of the Urban Meteorological Data for the Smart City  

Kim, Seong-Gon (Sfractum)
Kim, Seung Hee (Center of Excellence in Earth Systems Modeling & Observations, Chapman University)
Lim, Chul-Hee (College of General Education, Kookmin University)
Na, Seong-Kyun (Sfractum)
Park, Sang Seo (Department of Urban and Environmental Engineering, UNIST)
Kim, Jaemin (Atmospheric Sciences, Department of Astronomy, Space Science, and Geology, Chungnam National University)
Lee, Yun Gon (Atmospheric Sciences, Department of Astronomy, Space Science, and Geology, Chungnam National University)
Publication Information
Atmosphere / v.31, no.2, 2021 , pp. 241-249 More about this Journal
Abstract
A smart city utilizes data collected from various sensors through the internet of things (IoT) and improves city operations across the urban area. Recently substantial research is underway to examine all aspects of data that requires for the smart city operation. Atmospheric data are an essential component for successful smart city implementation, including Urban Air Mobility (UAM), infrastructure planning, safety and convenience, and traffic management. Unfortunately, the current level of conventional atmospheric data does not meet the needs of the new city concept. New and innovative approaches to developing high spatiotemporal resolution of observational and modeling data, resolving the complex urban structure, are expected to support the future needs. The geographic information system (GIS) integrates the atmospheric data with the urban structure and offers information system enhancement. In this study we proposed the necessity and applicability of the high resolution urban meteorological dataset based on heavy fog cases in the smart city region (e.g., Sejong and Pusan) in Korea.
Keywords
Urban meteorology; smart city; observation system; modeling; GIS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Basara, J. B., and Coauthors, 2011: The Oklahoma City Micronet. Meteorol. Appl., 18, 252-261, doi:10.1002/met.189.   DOI
2 KRIHS, 2018: Geospatial Information Strategies for the Hyper-connected Smart City. Korea Research Institute for Human Settlements Res. Rep. OTKCRK190760, 158 pp (in Korean).
3 KMA, 2021: Smart city high-resolution meteorological analysis-forecasting and development of meteorological-climate convergence technology prototype. Korea Meteorological Administration Res. Rep., in press (in Korean).
4 Knox, J. A., and Coauthors, 2013: Tornado debris characteristics and trajectories during the 27 April 2011 super outbreak as determined using social media data. Bull. Amer. Meteor. Soc., 94, 1371-1380, doi:10.1175/BAMS-D-12-00036.1.   DOI
5 Liu, Y., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 1077-1092.   DOI
6 MOLIT, 2019: A Study on Geographic Information Standardization Strategy to facilitate Smart City Project. Ministry of Land, Infrastructure and Transport, Res. Rep., KOGL 11-1613000-002595-01, 129 pp [Available online at https://www.codil.or.kr/viewDtlConRpt.do?gubun=rpt&pMetaCode=OTKCRK200494] (in Korean).
7 Park, K. C., and C. H. Lee, 2019: A study on the research trends for Smart City using topic modeling. J. Internet Comp. Serv., 20, 119-128, doi:10.7472/jksii.2019.20.3.119.   DOI
8 Turner, W. J. N., O. Kinnane, and B. Basu, 2014: Demandside characterization of the smart city for energy modelling. Energy Proced., 62, 160-169, doi:10.1016/j.egypro.2014.12.377.   DOI
9 Schroeder, A. J., J. B. Basara, and B. G. Illston, 2010: Challenges associated with classifying urban meteorological stations: The Oklahoma City Micronet example. The Open Atmos. Sci. J., 4, 88-100, doi:10.2174/1874282301004010088.   DOI
10 Silva, B. N., M. Khan, and K. Han, 2018: Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc., 38, 697-713, doi:10.1016/j.scs.2018. 01.053.   DOI
11 Li, W., M. Batty, and M. F. Goodchild, 2020: Real-time GIS for smart cities. Int. J. Geogr. Inf. Sci., 34, 311- 324, doi:10.1080/13658816.2019.1673397.   DOI
12 Ju, Y.-C., E. Lee, and W. Suh, 2020: An analysis on the smart city research trends. J. Korean Assoc. Reg. Inform. Soc., 23, 149-172, doi:10.22896/karis.2020.23.2.006 (in Korean).   DOI
13 Avtar, R., N. Sahu, A. K. Aggarwal, S. Chakraborty, A. Kharrazi, A. P. Yunus, J. Dou, and T. A. Kurniawan, 2019: Exploring renewable energy resources using remote sensing and GIS-A review. Resources, 8, 149, doi:10.3390/resources8030149.   DOI
14 Bieringer, P., A. Pina, H. Jonker, D. Lorenzetti, M. Sohn, G. Bieberbach, and R. N. Fry, 2019: An evaluation of the Joint Outdoor-Indoor Urban Large Eddy Simulation (JOULES) atmospheric transport and dispersion (at&d) modeling system. Extended Abstract, 19th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Bruges, Belgium, H19-063.
15 Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415-444, doi:10.5194/gmd-3-415-2010.   DOI
16 Hintz, K. S., H. Vedel, E. Kaas, and N. W. Nielsen, 2020: Estimation of wind speed and roughness length using smartphones: Method and quality assessment. J. Atmos. Oceanic Technol., 37, 1319-1332, doi:10.1175/JTECHD-19-0037.1.   DOI
17 Holden, J., and N. Goel, 2016: Fast-Forwarding to a Future of On-Demand Urban Air Transportation. Uber Elevate, 97 pp [Available online at https://www.uber.com/elevate.pdf].
18 KMA, 2018: Evaluation of Contribution of Meteorological Observation Data to Weather Forecasts. Korea Meteorological Administration Res. Rep., 240 pp (in Korean).
19 Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 1929-1969, doi:10.5194/gmd-11-1929-2018.   DOI
20 Maronga, B., and Coauthors, 2015: The Parallelized LargeEddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 2515-2551, doi:10.5194/gmd-8-2515-2015.   DOI
21 Kim, M., and S. Jung, 2017: An analysis and classification of technologies applied on smart city services - focused on 3 cities in Korea. Extended Abstract, Architectural Institute of Korea Fall Meeting, 37, AIK, 459-462 (in Korean with English abstract).
22 Sauer, J. A., and D. Munoz-Esparza, 2020: The FastEddy® resident-GPU accelerated large-eddy simulation framework: Model formulation, dynamical-core validation and performance benchmarks. J. Adv. Model. Earth Sy., 12, e2020MS002100, doi:10.1029/2020MS002100.   DOI
23 Subasinghe, I., S. Nittel, M. Cressey, M. Landon, and P. Bajracharya, 2020: Real-time mapping of natural disasters using citizen update streams. Int. J. Geogr. Inf. Sci., 34, 393-421, doi:10.1080/13658816.2019.1639185.   DOI