• Title/Summary/Keyword: %24CaTiO_3%24

Search Result 49, Processing Time 0.033 seconds

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones (고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구)

  • Ha, Shin-Young;Oh, Cheol;Gug, Seung-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.916-922
    • /
    • 2018
  • Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.

The Origin of Radioactive Elements Found in Groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology (치악산 편마암 복합체에 분포하는 지하수 내 함유된 방사성 원소의 기원: 주변 지질을 구성하는 광물과의 연관성을 중심으로)

  • Kim, Hyeong-Gyu;Lee, Sang-Woo;Kim, Soon-Oh;Jeong, Do-Hwan;Kim, Moon-Su;Kim, Hyun-Koo;Jeong, Jong Ok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.153-168
    • /
    • 2022
  • Petrological and mineralogical analyses were conducted to identify minerals containing radioactive elements (uranium) in the Chiaksan gneiss complex and to confirm their association with the surrounding groundwater. Fourteen minerals were identified through the microscopic and electron microscopy (SEMEDS) investigation. The principal minerals included plagioclase, biotite, quartz, alkali feldspar, chlorite, and calcite. Minor minerals were sphene, allanite, apatite, zircon, thorite, titanite, pyrite, and galena. A small amount of thorite was observed in the size of ~1 mm within macrocrystalline allanite. Allanite, which includes a large amount of rare earth elements, appeared in three distinctive patterns. The results of the EPMA analyses indicated that macrocrystalline allanite had higher elemental contents of TiO2~1.70 wt.%, Ce2O3~11.86 wt.%, FeO ~13.31 wt.%, MgO ~0.90 wt.% and ThO2 ~1.06 wt.% with the lowest average content of Al2O3 17.35 ± 2.15 wt.% (n = 7), CaO 12.13 ± 1.81 wt.% (n = 7). An allanite existing at the edge of the sphenes encompassing titanites had a higher element content of Al2O3 ~24.00 wt.%, Nd2O3 ~5.10 wt.%, Sm2O3~0.66 wt.%, Dy2O3~0.86 wt.% and Y2O3~1.38 wt.% with the lowest average content of TiO2 0.35 ± 0.21 wt.% (n = 11), Ce2O3 5.25 ± 1.03 wt.% (n = 11), FeO 9.84 ± 0.26 wt.% (n = 11), MgO 0.12 ± 0.05 wt.% (n = 11), and La2O3 1.49 ± 0.29 wt.% (n = 11). Allanites in a matrix of parental rocks exhibited intermediate values between the two elemental compositions mentioned above. None of the uranium-rich minerals were observed in the migmatitic gneiss within the study area. Consequently, the origin of uranium in the groundwater was not associated with the geology of the surrounding environment, but our investigation proved the existence of abundant allanites containing significant amounts of radioactive thorium and rare earth elements.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

Occurrence and Forming Process of the Reddish Bed at Hwangto Cave, Ulleung Island, Korea (울릉도 황토굴 적색층의 산출특징과 형성기작)

  • Woo, Hyeon Dong;Jang, Yun Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.239-254
    • /
    • 2016
  • The Hwangto cave is a sea cave which is located near shore in the Taeha-ri, Ulleung Island, being composed of the reddish tuff wall rock, the topic of this study, and the trachyte ceiling rock. The chemical compositions of the red tuff layer are 49.81-63.63% of $SiO_2$, 13.05-24.91% of $Al_2O_3$, 2.67-5.82% of $Fe_2O_3$, 2.87-6.92% of $Na_2O$, 2.37-3.85% of $K_2O$, 0.55-0.81% of $TiO_2$, 0-0.53% of MnO, 0.39-1.75% of MgO, and 0.60-1.40% of CaO with a pH ranging from 4.5 to 8. The reddish tuff are composed of 23.7-39.4% of anorthoclase, 16.9-33.3% of sanidine, 15.8-26.1% of illite, 5.1-9.0% of hematite, 0-3.7% of goethite, 6.9-9.9% of titanium oxide, and 0.9-9.5% of halite in mineral composition. Although it only includes anorthoclase, sanidine, and illite as major minerals, there can be additional vitric minerals that could not detected by the XRD. The mineralogy and textures of the tuff layer indicate that it became reddish due to the formation of amorphous palagonite and the oxidation of the iron as a heat from the trachytic lava affects the underlying tuff to altered. This iron oxides are enriched in the palagonite, or form microcrystalline or amorphous minerals. We thus suggest that the red tuff layer was generated by the combination of the thermal oxidation involved in the trachytic lava flow on the tuff layer, the palagonitization of the matrix of the tuff, and the oxidation of iron-bearing minerals.

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.

Occurrence and chemistry of pyrochlore and baddeleyite in the Sokli carbonatite complex, Kola Peninsula, Arctic

  • Lee, Mi-Jung;C. Terry Williams;Lee, Jong-Ik;Kim, Yeadong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.67-67
    • /
    • 2003
  • The chemical compositions and textural relationships of the Nb-Zr oxide minerals including pyrochlore [ideally (Ca,Na)$_2$Nb$_2$O$\sub$6/(OH,F), with up to 24% UO$_2$ and 16% Ta$_2$O$\sub$5/] and baddeleyite [ideally ZrO$_2$, with up to 6% Nb$_2$O$\sub$5/] in the Sokli carbonatite complex, Kola Peninsula, Arctic are described. These two minerals in carbonatites are the major hosts for the HFSEs such as U, Th, Ta, Nb, Zr and Hf and thus are interest both economically and petrologically. The Sokli carbonatite complex (360-370 Ma) in Northern Finland, which forms a part of the Paleozoic Kola Alkaline Province (KAP), is mainly composed of multi-stages of carbonatite and phoscorite associations (P1-C1 P2-C2, P3-C3, D4 and D5) surrounded by altered ultramafic rocks (olivinite and pyroxenite) and cut by numerous small dikes of ultramafic lamprophyre. The Sokli complex contains the highest concentration in niobium and probably in tantalum, which are economically very important to modern steel technology, among the ultramafic-alkaline complexes of the KAP. Pyrochlore and baddeleyite mostly concentrate in the phoscorites. Pyrochlores in the Sokli complex are generally rounded octahedra and cubes in shape, red brown to grey yellow in color, and 0.2 to 5 mm in size. They are found in all calcite carbonatites, phoscorites and dolomite carbonatites, except P1-C1 rocks. These pyrochlores display remarkable zonations which depend on host rock compositions, and have significant compositional variations with evolution of the Sokli complex. The common variation scheme is that (1) early pyrochlore is highly enriched in U and Ta; (2) these elements decrease abruptly in the intermediate stage, while Th and Ce increase, and (3) late stage pyrochlore is low in U, Ta, Th, and Ce, and correspondingly high in Nb. Baddeleyites in the Sokli complex occur in the early P1-C1 and P2-C2 rocks and rarely in P3. They crystallized earlier than pyrochlores, and occasionally show post-magmatic corrosion and replacement. The FeO and TiO$_2$ contents of baddeleyites are much lower than those of the other terrestrial and lunar baddeleyites, whereas Nb$_2$O$\sub$5/ and Ta$_2$O$\sub$5/ contents are the highest among the reported compositions. Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites decrease towards later stage facies, which is in accordance with the whole rock compositions. The variation of Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites is considered to be a good indicator to trace an evolution of the carbonatite complexes.

  • PDF

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part I - Foundry (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형 유리규산 농도의 비교분석 제 1부 - 주물사업장)

  • Kim, Hyunwook;Roh, Young Man;Phee, Young Gyu;Won, Jeoung IL;Kim, Yong Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.50-66
    • /
    • 1998
  • This study was conducted to estimate crystalline silica contents in airborne respirable dust from various manufacturing industries and to compare analytical performance of two methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy (FTIR). For this study, various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: foundry, brick, potteries, concrete, and abrasive material, etc. Both personal and area respirable dust samples were collected using 10 mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size, polyvinylchloride (PVC) filters as collection media. In addition, total dust samples were collected side-by-side to the respirable samples. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 0500, 7500, and 7602 for dust collection and quartz analysis. In addition, bulk samples were collected and analyzed by X-ray fluorescence (XRF) for minerals. In this article, only the results obtained from foundry are reported. The results from various other industries will be published in future articles. The respirable dust concentrations from personal samples by cyclone were $0.46-1.06mg/m^3$ and those from area samples were $0.34-0.73mg/m^3$. Dust concentrations of personal samples were significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. Total dust concentration ranged $1.24-3.40mg/m^3$. The mean quartz contents estimated by FTIR and XRD in the personal respirable dust samples were 5.12% and 4.41%, respectively, without significant difference between them. For quartz analyses, the two techniques were highly correlated with $r^2$ ranged 0.803-0.920. But the results by FTIR were mostly higher than those by XRD. In addition, cristobalite was not detected by FTIR. Significant correlations between contents of crystalline silica and such minerals as $Al_2O_3$, CaO, $TiO_2$, and $K_2O$ suggest possible interferences from these minerals.

  • PDF

Studieson Titanium Enamel Frit (티타늄琺瑯후릿트에 關한 硏究)

  • Lee, Chong-Keun;Han, Ki-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 1957
  • There are two problems to be solved by our efforts in the enamel frit. One is how we can cover the enamel frit thin with complete milk white as possible, and the other is how it can be, made resistant for chemicals than before one. The frit which can solved the two problems just mentioned above is titanium enamel frit. This frit has been developed in America after War Ⅱ, and now the research for concerning antimony frit into titanium frit is under development entirely. In order to develope the enamel industry in Korea, it is urgent problem to convert antimony frit into titanium frit. By the way the titanium frit is emulsified titanium oxide crystal which made through reheating the supersaturated solution of titanium oxide in the basis of glass. Unfortunately, there are many obscure points in active fact or which influence on its composition and characteristics yet. However, this task was tried for the first in Korea. As first step, the test was carried on the reference books, and we can be possible convert antimony frit into titanium frit as a result of this experiment. As a conclusion, for the purpose of developing the enamel industry in Korea, we studied that the research for converting antimony enamel frit which has been used popularly into titanium enamel frit which is more economic and resistant for chemicals. As a result of experiments, the following points concerning with titanium frit have become clearly. 1. It is better when the composition of titanium enamel frit has as following table.Man Duck San Silica 24 An Yang Feldspar 20 Borax 28 Sodium Nitrate 4 Cryolite 7 Calcium Carbonate 3.6∼1 Titanium Oxide 10 Calcium phosphate 0 ∼3.2 Calcium Fluoride 0∼1.8 Antimony Oxide 0∼0.5 2. The amount of $TiO_2$, to be added is $10%\;to\;12{%,\;CaF_2\;is\;under\;1.8%,\;P_2O_5\;is\;under\;1.6%,\;Sb_2O_3\;is\;under\;0.5%$. 3. In the titanium frit, the limit of iron oxide amount to be included is under 0. 5%. 4. Comparing the titanium enamel frit with antimony enamel frit not only the titanium frit can be savely 20.6% in the price of raw materials, but one time of glazing and heating process is omitted in each case, and it is known the titanium frit is more resistant for chemicals than antimony frit.

  • PDF