• Title/Summary/Keyword: %24CO_2%24 production

Search Result 409, Processing Time 0.037 seconds

Streptomyces griseoplanus SL20209에 의한 Aminopeptidase M 저해제의 생산 조건

  • Ko, Hack-Ryong;Chun, Hyo-Kon;Sung, Nack-Kie;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.336-343
    • /
    • 1996
  • Maximum amount of the aminopeptidase M inhibitors produced by Streptomyces griseoplanus SL20209 in 500 ml-Erlenmeyer flask was accumulated after cultivation for 3 days at 28$\circ$C, thereafter the amount of inhibitors decreased slowly with a pH change to alkaline. Arabinose, xylose, mannose and soluble starch were good carbon sources for the production of the inhibitors. On the other hand, glucose was only good for the cell growth but potently inhibited the production of inhibitors. Natural organic nitrogen sources such as soybean meal, fish meal, gluten meal and peanut powder were good for the production of inhibitors, however, soytone, peptone and inorganic nitrogens such as NH$_{4}$C1 and NH$_{4}$NO$_{3}$ were poor. Inclusion of yeast extract (0.5%, w/v) or K$_{2}$HPO$_{4}$ (0.05%) into the production medium increased the production of inhibitors by accelerating cell growth. The production of inhibitors was slightly increased on the medium containing CaCO$_{3}$ (0.3%) and zeolite (0.5%), respectively. Optimal temperature and initial pH range for the production ot inhibitors were determined to be 28$\circ$C and 6.0-7.0, respectively. Employing two improved production media consisting of 3% arabinose or soluble starch, 2.5% soybean meal, 0.5% yeast extract, 0.05% K$_{2}$HP0$_{4}$, 0.1% CaCO$_{3}$ and 0.3% zeolite (pH 6.8), 1.8-fold increase in the amount of inhibitors was achieved, comparing with the basal medium used.

  • PDF

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Development of Automatic Measurement and Control Method based on Single Chip Microcomputer for Tackjoo Fermentation (Single Chip Microcomputer를 이용한 탁주발효(濁酒醱酵)의 자동계측(自動計測)과 제어방법(制御方法)의 개발(開發))

  • Kim, Kyung-Man;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.391-394
    • /
    • 1993
  • For the automation of Tackjoo fermentation, a sensor measurable gas production during brewing and a controller were built. The performance tests were carried out at 10 litter Tackjoo fermentor, The sensor was consisted of a transparent acryl cell for bubble formation and photo-interrupter for the detection of bubbles of 0.018ml size. The fermentation controller was fabricated with a single chip microcomputer (MC68705R3) and provided with both the monitoring module of temperature measurement and the valve controling device for the cooling water circulation in coil type heat exchanger. The operation programs were developed and systemized in ROM. With this computer system, the gas production amount and rate were acquired during the Tackjoo fermentation. The fermentation curve based on the gas production rate showed a good agreement with that of alcohol concentration. The maximum rate of gas production was found after 24 hr at $30^{\circ}C$. The correlation equation between the gas production and alcohol concentration was established and used as the control algorithm of the fermentation.

  • PDF

Evaluation of Energy Production for a Small Wind Turbine Installed in an Island Area (도서지역 소형풍력발전기 에너지 발생량 평가)

  • Jang, Choon-Man;Lee, Jong-Sung;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.558-565
    • /
    • 2013
  • This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.

Combustion Characteristics of Swine Manure, Poultry Manure and Mixtures (돈분, 계분 그리고 혼합물에 대한 연소특성)

  • Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.616-620
    • /
    • 2013
  • In this work, the combustive properties of the swine manure, poultry manure, and mixtures based on the resource recycling-energy were investigated. After the specimens were dried to a constant weight by dry oven, combustive properties were tested by the cone calorimeter (ISO 5660-1). It was found that the peak effective heat of combustion (PEHC) in the swine manure (78.72 MJ/kg) has risen due to more amount of the hydrocabon compared with poultry manure (69.41 MJ/kg), also the swine manure increased both of the higher $CO_2$ production rate (0.1959 g/s) and total smoke release rate (THRR) ($419m^2/m^2$) than those of the poultry manure. However, both of the CO production release (0.0996 kg/kg) and CO production rate (0034 g/s) in the poultry manure increased due to more amount of the inorganic contents compared with swine manure. Thus, the high combustion energy is expected to generate depend on the hydrocarbon content.

Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing (Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

Growth and Estimated Production of Acanthogobius flavimanus in an Eelgrass (Zostera marina) Bed and Unvegetated Tidal Flat of Dongdae Bay

  • Kwak, Seok-Nam;Huh, Sung-Hoi;Kim, Ha-Won
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.315-321
    • /
    • 2009
  • The growth and estimated production of Acanthogobius flavimanus (1.9${\sim}$24.7 cm TL) were investigated in an eelgrass bed and unvegetated tidal flat of Dongdae Bay, Korea from March 2006 to February 2007. Growth in fish total length was expressed by the von Bertalanffy's growth equation as: $L_t=43.238(1-e^{-03138(t+02507)})$. Estimated densities, biomass, daily and annual production, and P/B ratio were higher at eelgrass bed than those of at unvegetated tidal flat. Monthly variation in daily production was large; the peak numbers occurred in November 2006 ($0.0014g/m^2$/day) at eelgrass bed, whereas was $0.002g/m^2$/day in July 2006 at unvegetated tidal flat. The eelgrass bed has been supported to maintain capacity of higher production of A. flavimanus than those of in unvegetated tidal flat.

Wake-up Treatments for Improving Oviposition and Colony Development of the Bumblebees Bombus ignitus and B. terrestris

  • Yoon, Hyung-Joo;Lee, Kyeong-Yong;Lee, Samg-Beom;Park, In-Gyun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Bumblebees are widely used to pollinate crops in greenhouses and fields. Here, we investigated whether different wake-up treatments during a short period of 1~3 days just before indoor rearing has any effects on oviposition and colony development of $CO_2$-treated Bombus ignitus queens and artificially hibernated B. terrestris queens The wake-up regimes were defined as 16L for 1 day (16L-1), 16 L per day for 3 days (16L-3), 24L for 1 day (24L-1), or 24D for 1 day (24D-1). Among these wake-up treatments, the oviposition rate and preoviposition period of B. ignitus queens reared at 24L-1 were 16.7~25.1% higher and 1.0~3.5 days shorter than other wake-up treatments. B. terrestris queens reared at 24L-1 also showed the best results for egg-laying characteristics, which were 8.9~18.8% higher for oviposition and 0.6~3.5 days shorter for preovipostion period than other wake-up treatments. Furthermore, B. terrestris queens reared at 24L-1 were 17.5% and 13.8% higher in rate of colony foundation and queen production, respectively, than other wake-up treatments. These results show that the most favorable wake-up treatment just before rearing for egg-laying and colony developmental characteristics of B. ignitus and B. terrestris queens was 24L-1. Overall, our findings indicate that a wake-up treatment just before rearing was effective for colony initiation and colony development of bumblebee queens.

Characteristics of wild yeast isolated from non-sterilized Makgeolli in Korea (국내 생막걸리에서 분리한 야생 효모의 특성)

  • Jung, Su Ji;Yeo, Soo-Hwan;Mun, Ji-Young;Choi, Han-Seok;Baek, Seong Yeol
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1043-1051
    • /
    • 2017
  • Wild yeasts were isolated from domestic non-sterilized Makgeolli and their fermentation characteristics were analyzed to select the best fermentation seed culture. A total of 65 yeast strains isolated yeasts from non-sterilized Makgeolli and Nuruk. In order to select fermentable strains, hydrogen sulfide, $CO_2$ production ability, alcohol tolerance and aroma component production ability were analyzed. To screen the aromatic strains of isolates, media containing cerulenin, 5,5,5-trifluor-DL-leucine (TFL) and API ZYM kit were used. There were 36 strains resistance to cerulenin and all strains produced esterase and demonstrated tolerance against TFL. Hydrogen sulfide, which could degrade the quality of the fermented beverage, was not produced in 34 yeast. The correlation between alcohol tolerance of yeast and carbon dioxide production was analyzed by principal component analysis. YM22, YM31, YM32 and YM37 produced a total of 0.14-0.18 g/72 h of $CO_2$ indicating high fermentability. Alcohol tolerance was measured by alcohol concentration. YM32, YM37 yeast had 20% alcohol tolerance. As a result, alcohol and flavor characteristics of wild yeast isolated from non-sterilized Makgeolli were analyzed and it was confirmed that yeast was suitable for the production of alcohol.

Analysis of environmental impact of activated carbon production from wood waste

  • Kim, Mi Hyung;Jeong, In Tae;Park, Sang Bum;Kim, Jung Wk
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • Activated carbon is carbon produced from carbonaceous source materials, such as coconut shells, coals, and woods. In this study, an activated carbon production system was analyzed by carbonization and activation in terms of environmental impact and human health. The feedstock of wood wastes for the system reduced fossil fuel consumption and disposal costs. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was one tonne of wood wastes. The boundary expansion method was applied to analyze the wood waste recycling process for activated carbon production. An environmental credit was quantified by avoided impact analysis. Specifically, greenhouse gases discharged from 1 kg of activated carbon production system by feeding wood wastes were evaluated. We found that this system reduced global warming potential of approximately $9.69E+00kg\;CO_2-eq$. compared to the process using coals. The environmental benefits for activated carbon production from wood wastes were analyzed in contrast to other disposal methods. The results showed that the activated carbon system using one tonne of wood wastes has an environmental benefit of $163kg\;CO_2-eq$. for reducing global warming potential in comparison with the same amount of wood wastes disposal by landfilling.