• Title/Summary/Keyword: %24CO_2%24 concentration

Search Result 573, Processing Time 0.034 seconds

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Effect of Leachate Recirculation LFG Generation Characteristics (침출수 재순환에 따른 매립가스 변화특성 연구)

  • Won, Seung-hyun;Park, Dae-won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • This study has been carried out to analyze the effects of leachate recirculation on methane gas concentration in the Landfill. The monthly average on precipitation of the landfill area during the period from 2010 to 2016 has been recorded at 130.9 mm and the total precipitation was recorded at 73.7 mm for the month of June in 2017. And based on the Korea meterological administration data obtained, the water content has been anticipated to be at low level. And for the control environment testing on the effects of leachate recirculation, the reading has been carried out in relation to the methane gas concentration with the landfill site tested with average reading of 30.14%. Once the reading has been established 5 tones of leachate has been injected and the readings carried out respectively with the first reading recorded at 24.66% on June with subsequent readings carried out, 31.51 (6/24), 36.88% (7/1) and final reading carried out on 7/25 registered at 52.47%. Based on the leachate recirculation, the test showed increase of methanate concentrations with the concentration percentage showing between 50~65%.

The Evaluation of Air Quality in Educational Child Care Centers (영유아 교육시설에서의 실내공기질 평가)

  • Lim, Ji-Hye;Pang, Seung-Ki;Shon, Jang-Yeul
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • It is indispensable for child care centers to investigate and manage indoor air quality (IAQ) because they perform education and day care for children who usually have weak immunity. Nevertheless, there is insufficient research being done, given its importance. This study aims to investigate indoor pollutants' concentration and to seek the causes in order to improve the air quality conditions. Also it aims to secure data which can be used for further researches. Measurements were performed for air temperature, relative humidity, carbon dioxide, carbon monoxide, fine particle mass, formaldehyde and volatile organic compounds. Temperature, humidity, CO and CO2 were measured 30times(1min/time) and PM10 was measured 10times (3min/time). Formaldehyde and volatile organic compounds were measured and analyzed based on The Indoor Air Quality Official Test Method. The results show that the temperatures were within the comfort zone in over half of the centers. CO2 was found to be the main pollutants as its concentration exceeded the IAQ standard. The concentrations of TVOC and PM10 exceeded the standard, by 32% and 24% respectively, whereas those of HCHO and CO were under the standard. HCHO and CO concentrations were under the guideline. 24% of child care centers for education were found to exceed the standard in 2 or more of the pollutants. 82% of were found to exceed the standard by 1 or more. Therefor it is requested for IAQ to manage and improve in child care center for education.

Bioequivalence of Cyclosporin A Hard Capsules (사이클로스포린 A 경질캅셀제에 대한 생물학적 동등성 평가)

  • 김종국;이은진;이미경;박준규;신희종;김인숙
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.296-302
    • /
    • 1998
  • The bioequivalence of two cyclosporin A products was evaluated in 26 normal male volunteers (age 25 ~33 yr, body weight 56~84 kg) following single oral administration. Test product was a hard capsule containing the granule of cyclosporin A (Chong Kun Dang Corp., Korea) and reference product, Sandimmun", was a soft capsule containing surfactant, oil, alcohol and cyclosporin A (Sandoz, Swiss). Both products contain 100 mg of cyclosporin A. Four capsules of the test and the reference product were administered to the volunteers, respectively, by randomized two period cross-over study (2$\times$2 Latin square method). Average drug concentrations at each sampling time and pharmacokinetic parameters were not significantly different between two products (p>0.05); the area under the concentration-time curve to last sampling time (24 hr) (AU $Co_{24}$) (5034.8$\pm$ 1760.6 vs 4635.4$\pm$ 1158.9 ng . h/ml), maximum plasma concentration ( $C_{max}$) (1002.7$\pm$353.1 vs 980. 4$\pm$ 171.7 ng/71), and mean residence time (MRT) (6.16$\pm$0.81 vs 5.64$\pm$0.50 h). The differences of mean AUC 7-,4,7~, T_ and MRT between the two products (7.93,2.22,16 and 8.39%, respectively) were less than 20% given as a guideline. The power (1-$\beta$) and treatment difference ($\Delta$) for AU $Co_{24}$, $C_{max}$ and MRT were more than 0.8 and less than 0.2, respectively. Although $T_{max}$ of the two products was significantly different each other (p<0.05), $T_{max}$ might be an insignificant parameter because cyclosporin A generally requires long-term administration. From these results, the two products are bioequivalent.alent.t.

  • PDF

Formation Behavior of Precipitated Calcium Carbonate Polymorphs by Supersaturation (과포화도에 의한 침강성 탄산칼슘 다형체의 생성거동)

  • Ahn, Young jun;Jeon, ong Hyuk;Lee, Shin Haeng;Yu, Young Hwan;Jeon, Hong Myeong;Ahn, Ji Whan;Han, Choon
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.22-31
    • /
    • 2015
  • From results obtained by adjusting experimental variables based on the kinetic, the nucleation rate for formation of precipitated calcium carbonate (PCC) was investigated. Formation behavior of PCC was investigated for various concentrations of NaOH solution and $Na_2CO_3$ addition methods in the $Ca(OH)_2$ slurry. The range of nucleation rate was investigated for dissolution rates of major ion concentrations, $Ca^{2+}$ and $CO{_3}^{2-}$. In case of high concentration of major ions, vaterite and calcite were synthesized. The high nucleation rate was achieved for lower either $Ca^{2+}$ or $CO{_3}^{2-}$ ion concentration, calcite was mainly synthesized and when concentration of major ions was low, aragonite was synthesized. Furthermore, the formation of calcite was decreased with increasing concentration of NaOH. homogeneous aragonite could be obtained by addition 5 M NaOH. Therefore, in this study, specific shape of polymorphs could be prepared through controlling supersaturation.

Adsorption of Amine and Sulfur Compounds by Cobalt Phthalocyanine Derivatives (코발트 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.592-598
    • /
    • 2007
  • The adsorption capability of cobalt phthalocyanine derivatives was investigated by means of X-ray diffractometor (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and temperature programmed desorption (TPD). According to TPD results for ammonia, cobalt phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic cobalt phthalocyanine (Co-TCPC) has a stronger desorption peak (chemical adsorption) at high temperature and a weaker desorption peak (physical adsorption) at low temperature than cobalt phthalocyanine (Co-PC). The specific surface areas of Co-TCPC and Co-PC were 37.5 and $18.4m^2/g$, respectively. The pore volumes of Co-TCPC and Co-PC were 0.17 and $0.10cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 120 ppm of equilibrium concentration was 24.3 mmol/g for Co-TCPC and 0.8 mmol/g for Co-PC. The removal efficiencies of dimethyl sulfide of Co-TCPC and Co-PC in batch experiment of 225 ppm of initial concentration were 92 and 18%, respectively. The removal efficiencies of trimethyl amine of Co-TCPC and Co-PC in batch experiment of 118 ppm of initial concentration were 100 and 17%, respectively.

Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing (pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화)

  • Chae, Gitak;Yu, Soonyoung;Kim, Chan Yeong;Park, Jinyoung;Bang, Haeun;Lee, Inhye;Koh, Dong-Chan;Shinn, Young Jae;Oh, Jinman
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.24-35
    • /
    • 2019
  • It is known that ${\delta}^{13}C_{DIC}$ (carbon-13 isotope of dissolved inorganic carbonate (DIC) ions) of water increases when dissolved $CO_2$ degases. However, ${\delta}^{13}C_{DIC}$ could decrease when the pH of water is lower than 5.5 at the early stage of degassing. Laboratory experiments were performed to observe the changes of ${\delta}^{13}C_{DIC}$ as $CO_2$ degassed from three different artificial $CO_2$-rich waters (ACWs) in which the initial pH was 4.9, 5.4, and 6.4, respectively. The pH, alkalinity and ${\delta}^{13}C_{DIC}$ were measured until 240 hours after degassing began and those data were compared with kinetic isotope fractionation calculations. Furthermore, same experiment was conducted with the natural $CO_2$-rich water (pH 4.9) from Daepyeong, Sejong City. As a result of experiments, we could observe the decrease of DIC and increase of pH as the degassing progressed. ACW with an initial pH of 6.4, ${\delta}^{13}C_{DIC}$ kept increasing but, in cases where the initial pH was lower than 5.5, ${\delta}^{13}C_{DIC}$ decreased until 6 hours. After 6 hours ${\delta}^{13}C_{DIC}$ increased within all cases because the $CO_2$ degassing caused pH increase and subsequently the ratio of $HCO_3{^-}$ in solution. In the early stage of $CO_2$ degassing, the laboratory measurements were well matched with the calculations, but after about 48 hours, the experiment results were deviated from the calculations, probably due to the equilibrium interaction with the atmosphere and precipitation of carbonates. The result of this study may be not applicable to all natural environments because the pressure and $CO_2$ concentration in headspace of reaction vessels was not maintained constant as well as the temperature. Nevertheless, this study provides fundamental knowledge on the ${\delta}^{13}C_{DIC}$ evolution during $CO_2$ degassing, and therefore it can be utilized in the studies about carbonated water with low pH and the monitoring of geologic carbon sequestration.

Development of a Ventilation Model for Mushroom House Using Adiabatic Panel

  • Kim Kee Sung;Han Jin Hee;Kim Moon Ki;Nam Sang Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, a ventilation model was developed to determine a ventilation rate for the balance of heat, moisture and $CO_{2}$ in a mushroom house. Internal and external temperature, relative humidity and $CO_{2}$ concentration were measured and used to validate the ventilation model. The effects of various environmental factors on physiological responses of mushroom were also investigated. The verified model was simulated under the observed ventilation rates with a difference of$ 0.001{\~}0.065\;m^{3}{\cdot}S^{-1}$ (relative error of $0.3{\~}18.9\%$) when external temperature varied 22.5 to $24.8^{circ}C$ and average ventilation rates was $0.35m^{3}{\cdot}S^{-1}$. The optimal conditions for mushroom growth (internal temperature $22 ^{circ}C$, relative humidity $80\%$, $CO_{2}$ concentration 1,000 ppm) were used for the model application with external temperature, relative humidity and $CO_{2}$ concentration of $27.5{\~}33.5^{circ}C$, $60\%$, and 355 ppm, respectively. Thermal balance was a important factor for an optimum ventilation up to the external temperature of $32^{circ}C$, while $CO_{2}$ concentration balance was more important over $32^{circ}C$. This suggests that humidification for moisture balance is required to maintain temperature and $CO_{2}$ concentration at an optimal level by ventilation in a mushroom house.

Alterations in Dichloromethane-Induced Carboxyhemoglobin Elevation by Several Metabolic Modulators (이염화메탄에 의한 Carboxyhemogolbin 생성에 몇몇 대사활성조절제들이 미치는 영향)

  • 강경애;김영철
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.273-277
    • /
    • 1995
  • Several metabolic modulators on the generation of carbon monoxide (CO)from dichloromethane (DCM) was examined in adult female rats. It has been known that DCM is converted to CO by cytochrome P-450 or to carbon dioxide $(CO_2)$ by glutathione-dependent metabolic reaction. In rats treated with DCM (3 mmol/kg, ip) only, the carboxyhemoglobin (COHb) level reached a peak of approximately 10% 2 or 3 hr following the treatment. Disulfiram (300 mg/kg, ip) or allylsulfide (200 mg/kg, po), both known as a selective inhibitior for cytochrome P-450 2E1, blocked the increase in COHb concentratlons almost completely suggesting that the metabolic conversion of DCM to CO is mediated by the activity of this specific type of isozyme. YH439 (125 or 250 mg/kg, po), a potential hepatoprotective agent, decreased the COHb elevation as well indicating that this chemical is a potent inhibitor for 2E1. In rats treated with pyrazine (200 mg/kg, ip) 18 hr prior to DCM the peak COHb concentration was decreased by approximately 3 or 4%. However, pretreatment of rats with pyrazine either 24 or 48 hr before DCM increased the peak COHb concentration significantly compared to the rats treated with DCM only. The results in the present study strongly suggest that the generation of CO from DCM depends on the 2E1 activity and that the pharmacological and/or toxicological action of YH439 or pyrazine in animals or human is associated with its effect on this isozyme.

  • PDF

Selective Solvent Extraction of In from Synthesis Solution of MOCVD Dust using D2EHPA (MOCVD 더스트 합성용액으로부터 D2EHPA를 이용한 In의 선택적 용매추출)

  • Im, Byoungyong;Swain, Basudev;Lee, Chan Gi;Park, Jae Layng;Park, Kyung-Soo;Shim, Jong-Gil;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.80-86
    • /
    • 2015
  • The separation of In from the synthesis solution with Ga, Fe, and Al has been studied by the solvent extraction using D2EHPA as an extractant. The effects as a function of the concentration of extractant and HCl on the extraction of In were investigated. The extraction of In and Ga increased with decreasing HCl concentration, but that of Fe and Al was independent. Separation factor between In and Ga of 115 was obtained at 1.0 M D2EHPA in the presence of 0.5 M HCl of feed solution. Consequently, this study shows that D2EHPA is suitable extractant for In extraction from the synthesis solution. Extraction efficiency and separation factor could be increased by controlling HCl and extractant concentration.