• Title/Summary/Keyword: $scCO_2$

Search Result 331, Processing Time 0.03 seconds

Characterization of the Yellow Croaker Larimichthys polyactis muscle Oil Extracted with Supercritical Carbon Dioxide and an Organic Solvent

  • Lee, Joo-Hee;Asaduzzaman, A.K.M.;Yun, Jun-Ho;Yun, Jun-Hyun;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.275-281
    • /
    • 2012
  • Yellow croaker Larimichthys polyactis muscle oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-$CO_2$), in a semi-batch flow extraction process. SC-$CO_2$ was applied at temperature $35^{\circ}C$ to $45^{\circ}C$ and $150^{\circ}C$ to $250^{\circ}C$ bar of pressure. The flow rate of $CO_2$ (27.79 g/min) was constant throughout the entire 1.5 h extraction period. The oil extraction yield was influenced by the physical properties of SC-$CO_2$ at different temperatures and pressures. The extracted oil was analyzed by gas chromatography to determine the fatty acid composition. According to our results, the SC-$CO_2$ extracted oil was high in eicosapentaenoic acid and docosahexaenoic acid. In addition, the SC-$CO_2$ extracted oil showed greater stability than n-hexane extracted oil based on the peroxide value and acid value. Thus, the quality of yellow croaker oil obtained by SC-$CO_2$ extraction was slightly higher than that of oil obtained by n-hexane extraction.

The Effect of Supercritical Carbonation on Quality Improvement of Recycled Fine Aggregate (초임계 탄산화 반응이 순환잔골재의 품질개선에 미치는 영향)

  • Heo, Seong-Uk;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The objective of this work is to prove a possibility of void f illing through a carbonation f or the purpose of improving the quality of recycled aggregate. Carbonation can permanently immobilize CO2, which is a greenhouse gas, and thus provides additional benefit on environment. In this work, recycled fine aggregate was reacted using gaseous CO2 and supercritical CO2(scCO2) in a closed chamber, and the changes in physical properties of the recycled f ine aggregate bef ore and af ter carbonation were analyzed using the apparent density, skeletal density, pH, and FE-SEM measurements. Thereafter, a mortar specimen was prepared and a compressive strength was measured. According to the experimental results, it was found that the increase in the apparent density and the true density was higher by the reaction with scCO2, which was conducted at high temperature and high pressure compared to the reaction with gaseous CO2. In addition, the pH of the eluted water was found to have a larger initial decrease than that observed with samples from reaction by gaseous CO2. The shape and amount of calcium carbonate crystals were also found to be larger than that from gaseous CO2. The increase in compressive strength was the largest when using recycled fine aggregate reacted with scCO2. It was clear that quality improvement of recycled fine aggregate was higher with scCO2 than with gaseous CO2.

Catalytic Oxidation Conversion Characteristics of VOCs in Supercritical Fluid Media (초임계유체 반응매개상에서 VOCs의 촉매산화 전환특성)

  • 이승범;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.69-76
    • /
    • 2001
  • The catalytic oxidation of volatile organic compounds (VOCs), which were benzene and toluene, was studied in the supercritical carbon dioxide($SC-CO_2$) media. In $SC-CO_2$ media, the deep oxidation conversion of VOCs was increased with the temperature and pressure. The deep oxidation conversion in SC -$CO_2$ media is better than that in air media at same pressure condition. This can be explained by the solubility of VOCs in $SC-CO_2$. The many intermediates produced by the partial oxidation of VOCs were detected from off-line samples. The intermediates were Identified as benzene, toluene, benzaldehyde, phenol, naphthalene, 1,1`-biphenyl, benzoic acid, 3-methylphenol, 1,1'-(1,2-ethanediyl)bis- benzene, 1,1'-(1,2-ethene- diyl)bis-benzene, anthracene, and so on. The amount of intermediates was decreased as the molar radio of oxygen to carbon dioxide was decreased. When the molar ratio of oxygen to carbon dioxide was 1 : 16, the deep conversion was kept constant. Thus, the catalytic oxidation process in $SC-CO_2$ media can be combined on-line with supercritical fluid extraction of environmental matrices and supercritical regeneration of used adsorbent. Thus, the nontoxic $SC-CO_2$ media process was suggested as the new VOCs control technology.

  • PDF

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

Design of CO2 Absorber Mix Tuned for Ripening of Packaged Kimchi (포장 김치의 숙성에 맞춘 CO2 흡수제 배합비율 설계)

  • Jung, Soo Yeon;Lee, Dong Sun;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.35-40
    • /
    • 2021
  • Calcium hydroxide (CH) reacts with CO2 to produce moisture, and sodium carbonate (SC) reacts with CO2 in the presence of moisture. Using these different characteristics of these two reactants, a CH/SC mixture of CO2 absorber tuned for kimchi ripening to produce CO2 in a flexible package was selected. A ratio of CH:SC (1:2) in highly gas permeable microporous spunbonded film (Tyvek) sachet was found to be appropriate for delayed and consistent CO2 absorption useful for kimchi package. Addition of superabsorbent polymer (SAP) as moisture buffer was helpful for boosting the consistency of CO2 absorption. In a package of 0.5 kg kimchi at 10℃, the sachet consisting of 0.794 g of CH + 2.276 g of SC + 0.4 g of SAP suppressed its volume expansion and maintained a suitable range of CO2 partial pressure (PCO2) steadily inside. These optimal conditions may vary depending on the type and salinity of kimchi, storage and distribution temperature, and the material and area of the absorber sachet. This study showed a potential of mixture CO2 absorber to be tuned for CO2 producing packaged kimchi for the purpose of keeping consistent PCO2 at tolerable volume expansion.

Development and Application of Micromodel for Visualization of Supercritical CO2 Migration in Pore-scale (공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2015
  • Despite significant effects on macroscopic migration and distribution of CO2 injected during geological sequestration, only limited information is available on wettability in microscopic scCO2-brine-mineral systems due to difficulties in pore-scale observation. In this study, a micromodel had been developed to improve our understanding of how scCO2 flooding and residual characteristics of porewater are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of glass beads and glass plates) in a pressurized chamber provided the opportunity to visualize scCO2 spreading and porewater displacement. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system. Measurement of contact angles of residual porewater in micromodels were conducted to estimate wettability in a scCO2-water-glass bead system. The measurement revealed that the brine-3M NaCl solution-is a wetting fluid and the surface of glass beads is water-wet. It is also found that the contact angle at equilibrium decreases as the pressure decreases, whereas it increases as the salinity increases. Such changes in wettability may significantly affect the patterns of scCO2 migration and porewater residence during the process of CO2 injection into a saline aquifer at high pressures.

Antifungal activity of Saccharomyces cerevisiae peroxisomal 3-ketoacyl-CoA thiolase

  • Lee, Jung-Ro;Kim, Sun-Young;Chae, Ho-Byoung;Jung, Ji-Hyun;Lee, Sang-Yeol
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.281-285
    • /
    • 2009
  • Peroxisomes play an important role in cellular defense systems and generate secondary messengers for cellular communication. Saccharomyces cerevisiae containing oleate-induced peroxisomes were subjected to buffer-soluble extraction and two chromatographic procedures, and a protein with antifungal activity was isolated. The results of MALDI-TOF analysis identified the isolated protein as peroxisomal 3-ketoacyl-CoA thiolase (ScFox3). Purified yeast ScFox3 exhibited thiolase activity that catalyzed the thiolytic cleavage of 3-ketoacyl-CoA to acetyl-CoA and acyl-CoA. ScFox3 protein inhibited various pathogenic fungal strains, with the exception of Aspergillus flavus. Using ScFox3-GFP and PTS2 signal-truncated ScFox3M-GFP, we showed that only ScFox3-GFP, with an intact PTS2 peroxisome signal sequence, was able to translocate into peroxisomes. Yeast ScFox3 is a natural antifungal agent found in peroxisomes.

Fabrication Characteristics and Electrochemical Studies of SOFC Unit Cell using ScSZ-based Electrolyte Powder prepared by Co-precipitation Synthesis (공침법에 의한 고체산화물연료전지용 ScSZ계 전해질의 제조공정 특성 및 전기화학적 평가)

  • Kang, Ju Hee;Lee, Ho Jae;Kim, Ho-Sung;Jeong, Jong Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.138.2-138.2
    • /
    • 2010
  • Scandium-doped zirconium, ScSZ-based electrolyte, provides higher oxygen conductivity than YSZ and nano-based electrolyte materials are ideal for fabricating thin film electrolyte membrane of SOFC unit cell. Moreover, it may be applied to anode and cathode as well as electrolyte as ionic conductor. In this report, nano-based ScSZ-based electrolyte powder was prepared by co-precipitation synthesis. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting and co-firing using the synthesized ScSZ-based powders, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Fatty Acid Composition and Stability of Extracted Mackerel Muscle Oil and Oil-Polyethylene Glycol Particles Formed by Gas Saturated Solution Process

  • Haque, A.S.M. Tanbirul;Asaduzzaman, A.K.M.;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • The oil in mackerel muscle was extracted using an environment friendly solvent, supercritical carbon dioxide (SC-$CO_2$) at a semibatch flow extraction process and an n-hexane. The SC-$CO_2$ was maintained at a temperature of $45^{\circ}C$ under pressures ranging from 15 to 25 MPa. The flow rate of $CO_2$ (27 g/min) was constant during the entire 2 h extraction period. The fatty acid composition of the oil was analyzed using gas chromatography (GC). Significant concentrations of eicosapentaenoic acid (EPA) acid and docosahexaenoic acid (DHA) acid were present in the SC-$CO_2$ extracted oil. The oil extracted using SC-$CO_2$ exhibited increased stability compared with n-haxane extracted oil. Particles of mackerel oil together with the biodegradable polymer, polyethylene glycol (PEG) were formed using a gas saturated solution process (PGSS) with SC-$CO_2$ in a thermostatted stirred vessel. Different temperatures ($45-55^{\circ}C$), pressures (15-25 MPa) and a nozzle size $400{\mu}m$ were used for PGSS with a 1 h reaction time. The stability of mackerel oil in the particles did not changed significantly.