• Title/Summary/Keyword: $resveratrol-3-O-{\beta}-D-glucoside$

Search Result 4, Processing Time 0.024 seconds

Isolation and Biological Activity of $Resveratrol-3-O-{\beta}-D-Glucoside$ in Transgenic Rehmannia glutinosa L. Transformed by Peanut Resveratrol Synthase Gene (RS3)

  • Lim, Jung-Dae;Yang, Deok-Chun;Yun, Song-Joong;Chung, Ill-Min;Sung, Eun-Soo;Kim, Myong-Jo;Heo, Kweon;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.406-414
    • /
    • 2004
  • Resveratrol, which is both a phytoalexin with antifungal activity and a phytochemical associated with reduced cancer risk and reduced cardiovascular disease, is synthesized in a limited number of plant species including peanut. Resveratrol synthesis is catalyzed by the enzyme stilbene synthase including resveratrol synthase (RS). Resveratrol synthase gene (RS3) obtained from peanut, Arachis hypogaea, Fabaceae has been transferred into chinese foxglove, Rehmannia glutinosa by using Agrobacterium mediated transformation. RS t-DNA introduced to chinese foxglove (R. glutinosa L) by transformation and its reaction product, $resveratrol-3-O-{\beta}-D-glucoside$ was isolated and characterized using HPLC. Also its biological effects was tested in inhibition of the lipid peroxidation of mouse LDL by glycosylated stilbenes derivatives obtained from transgenic plants. $Resveratrol-3-O-{\beta}-D-glucoside$ isolated from transgenic R. glutinosa L. showed antimicrobial activity of the growth inhibition zone against Escherichia coli and Salmonella typhimurium. Therefore, this compound can be contributed to be useful as a phytoalexin for plant health as well as a phytochemical for human health.

Glucosylation of Resveratrol Improves its Immunomodulating Activity and the Viability of Murine Macrophage RAW 264.7 Cells (당화된 레스베라트롤의 대식세포 RAW 264.7세포의 생존능력과 레스베라트롤의 면역제어 활성을 증가)

  • Pandey, Ramesh Prasad;Lee, Jisun;Park, Yong Il;Sohng, Jae Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Effects of resveratrol glucosylation on the immunomodulation properties of resveratrol and on the viability of macrophage cells have been studied by using murine macrophage RAW 264.7 cells. Nitric oxide (NO) and interleukin 6 (IL-6) expression in macrophages in vitro were studied after treatment with different concentrations of (E)-resveratrol, (E)-resveratrol 3-O-${\beta}$-${\small{D}}$-glucoside (R-3-G), or (E)-resveratrol 4'-O-${\beta}$-${\small{D}}$-glucoside (R-4'-G). In vitro viability of RAW 264.7 cells after treatment with the aforementioned three compounds was also studied. As demonstrated by macrophage cell viability assays, two different resveratrol monoglucosides, R-3-G and R-4'-G, exhibited 50-80% reduced cytotoxicity in comparison to (E)-resveratrol in A549 and HepG2 cells. Compared to the resveratrol aglycon, both glucosylated resveratrol derivatives positively modulated NO and IL-6 production in macrophages positively via transcriptionally up-regulating IL-6 and iNOS expression. Conjugation of a glucose moiety on resveratrol was found to enhance the immunomodulating activity of resveratrol and the viability of RAW 264.7 cells.

Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings

  • Choi, Sang Won;Jang, Yeon Jeong;Lee, Yu Jin;Leem, Hyun Hee;Kim, Eun Ok
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.256-262
    • /
    • 2013
  • Four functional constituents, oxyresveratrol 3'-O-${\beta}$-D-glucoside (ORTG), oxyresveratrol (ORT), t-resveratrol (RT), and moracin (MC) were isolated from the ethanolic extract of mulberry (Morus alba L.) twigs by a series of isolation procedures, including solvent fractionation, and silica-gel, ODS-A, and Sephadex LH-20 column chromatographies. Their chemical structures were identified by NMR and FABMS spectral analysis. Quantitative changes of four phytochemicals in mulberry twigs were determined by HPLC according to cultivar, producing area, and heat processing. ORTG was a major abundant compound in the mulberry twigs, and its levels ranged from 23.7 to 105.5 mg% in six different mulberry cultivars. Three other compounds were present in trace amounts (<1 mg/100 g) or were not detected. Among mulberry cultivars examined, "Yongcheon" showed the highest level of ORTG, whereas "Somok" had the least ORTG content. Levels of four phytochemicals in the mulberry twigs harvested in early September were higher than those harvested in early July. Levels of ORTG and ORT in the "Cheongil" mulberry twigs produced in the Uljin area were higher than those produced in other areas. Generally, levels of ORTG and ORT in mulberry twigs decreased with heat processing, such as steaming, and microwaving except roasting, whereas those of RT and MC did not considerably vary according to heat processing. These results suggest that the roasted mulberry twigs may be useful as potential sources of functional ingredients and foods.