DOI QR코드

DOI QR Code

Glucosylation of Resveratrol Improves its Immunomodulating Activity and the Viability of Murine Macrophage RAW 264.7 Cells

당화된 레스베라트롤의 대식세포 RAW 264.7세포의 생존능력과 레스베라트롤의 면역제어 활성을 증가

  • Pandey, Ramesh Prasad (Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University) ;
  • Lee, Jisun (Department of Biotechnology, The Catholic University of Korea) ;
  • Park, Yong Il (Department of Biotechnology, The Catholic University of Korea) ;
  • Sohng, Jae Kyung (Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University)
  • Received : 2016.11.04
  • Accepted : 2017.03.15
  • Published : 2017.03.28

Abstract

Effects of resveratrol glucosylation on the immunomodulation properties of resveratrol and on the viability of macrophage cells have been studied by using murine macrophage RAW 264.7 cells. Nitric oxide (NO) and interleukin 6 (IL-6) expression in macrophages in vitro were studied after treatment with different concentrations of (E)-resveratrol, (E)-resveratrol 3-O-${\beta}$-${\small{D}}$-glucoside (R-3-G), or (E)-resveratrol 4'-O-${\beta}$-${\small{D}}$-glucoside (R-4'-G). In vitro viability of RAW 264.7 cells after treatment with the aforementioned three compounds was also studied. As demonstrated by macrophage cell viability assays, two different resveratrol monoglucosides, R-3-G and R-4'-G, exhibited 50-80% reduced cytotoxicity in comparison to (E)-resveratrol in A549 and HepG2 cells. Compared to the resveratrol aglycon, both glucosylated resveratrol derivatives positively modulated NO and IL-6 production in macrophages positively via transcriptionally up-regulating IL-6 and iNOS expression. Conjugation of a glucose moiety on resveratrol was found to enhance the immunomodulating activity of resveratrol and the viability of RAW 264.7 cells.

레스베라트롤의 면역제어 성질과 대식세포의 생존능력과 관련하여 당화된 레스베라트롤의 효과를 확인하기 위해 대식세포 RAW 264.7에서 연구하였다. 인비토로에서 대식세포에서 총 4개의 레스베라트롤 및 당화된 유도체 (E)-resveratrol, (E)-resveratrol 3-O-${\beta}$-${\small{D}}$-glucoside (R-3-G), 및 (E)-resveratrol 4'-O-${\beta}$-${\small{D}}$-glucoside (R-4'-G)를 여러 가지 농도로 처리한 후 일산화질소 (NO)와 인터루킨 6 (IL-6) 발현을 연구하였다. 앞서 언급한 물질로 처리한 후 인비토로에서 RAW 264.7 세포의 생존능력도 연구하였다. 대식세포 생존능력 평가분석 결과를 보면, 두 개의 레스베라트롤 모노글루코사이드인 R-3-G와 R-4'-G은 (E)-resveratrol와 비교하여 A549 and HepG2 세포에서 50-80% 감소된 독성을 보여준다. 당이 없는 레스베라트롤과 비교하면, 당화된 레스베라트 유도체는 긍정적으로 전사적으로 IL-6 및 iNOS 발현이 높아지는 방향으로 NO 및 대식세포에서 IL-6의 생산이 조절된다. 레스베라트롤의 당의 역할은 RAW 264.7 세포의 생존능력과 레스베라트롤의 면역제어 활성을 증가시켜 주는 것으로 보여주고 있다.

Keywords

References

  1. Feng YH, Zhou WL, Wu QL, Li XY, Zhao WM, Zou JP. 2002. Low dose of resveratrol enhanced immune response of mice. Acta Pharmacol. Sin. 23: 893-897.
  2. Fremont L. 2000. Biological effects of resveratrol. Life Science 66: 663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
  3. Fuggetta M, Mattivi F. 2011. The immunomodulating activities of resveratrol glucosides in humans. Recent Pat. Food Nutr. Agric. 3: 81-90. https://doi.org/10.2174/2212798411103020081
  4. Gao X, Deeb D, Media J, Divine G, Jiang H, Chapman RA, et al. 2003. Immunomodulatory activity of resveratrol: discrepant in vitro and in vivo immunological effects. Biochem. Pharmacol. 66: 2427-2435. https://doi.org/10.1016/j.bcp.2003.08.008
  5. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220. https://doi.org/10.1126/science.275.5297.218
  6. Baur JA, Sinclair DA. 2006. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5: 493-506. https://doi.org/10.1038/nrd2060
  7. Neves AR, Lucio M, Lima JL, Reis S. 2012. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem. 19: 1663-1681. https://doi.org/10.2174/092986712799945085
  8. Gugler R, Leschik M, Dengler HJ. 1975. Disposition of quercetin in man after single oral and intravenous doses. Eur. J. Clin. Pharmacol. 9: 229-234. https://doi.org/10.1007/BF00614022
  9. Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H. 2009. Enzymatically modified isoquercitrin, alpha-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 32: 2034-2040. https://doi.org/10.1248/bpb.32.2034
  10. Tsai SH, Lin-Shiau SY, Lin JK. 1999. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br. J. Pharmacol. 126: 673-680. https://doi.org/10.1038/sj.bjp.0702357
  11. Wadsworth TL, Koop DR. 1999. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem. Pharmacol. 57: 941-949. https://doi.org/10.1016/S0006-2952(99)00002-7
  12. Gao X, Xu YX, Janakiraman N, Chapman RA, Gautam SC. 2001. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 62: 1299-1308. https://doi.org/10.1016/S0006-2952(01)00775-4
  13. Choi O, Lee JK, Kang SY, Pandey RP, Sohng JK, Ahn JS, et al. 2014. Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives. J. Microbiol. Biotechnol. 24: 614-618. https://doi.org/10.4014/jmb.1401.01031
  14. Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK. 2014a. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells 37: 172-177. https://doi.org/10.14348/molcells.2014.2348
  15. Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, et al. 2014b. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80: 7235-7243. https://doi.org/10.1128/AEM.02076-14
  16. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  17. Diehl S, Rincon M. 2002. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 39: 531-536. https://doi.org/10.1016/S0161-5890(02)00210-9
  18. Detmers PA, Hernandez M, Mudgett J, Hassing H, Burton C, Mundt S, et al. 2000. Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J. Immunol. 165: 3430-3435. https://doi.org/10.4049/jimmunol.165.6.3430
  19. Bowe CL, Mokhtarzadeh L, Venkatesan P, Babu S, Axelrod HR, Sofia MJ, et al. 1997. Design of compounds that increase the absorption of polar molecules. Proc. Natl. Acad. Sci. USA 94: 12218-12223. https://doi.org/10.1073/pnas.94.22.12218
  20. Zhong M, Cheng GF, Wang WJ, Guo Y, Zhu XY, Zhang JT. 1999. Inhibitory effect of resveratrol on interleukin 6 release by stimulated peritoneal macrophages of mice. Phytomedicine 6: 79-84. https://doi.org/10.1016/S0944-7113(99)80039-7
  21. Holtmann H, Resch K. 1995. Cytokines. Naturwissenschaften. 82: 178-187. https://doi.org/10.1007/BF01143192
  22. Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D. 2000. Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem. Pharmacol. 60: 1539-1548. https://doi.org/10.1016/S0006-2952(00)00471-8

Cited by

  1. Development, Characterization, and In Vitro Evaluation of Resveratrol-Loaded Poly-(ε-caprolactone) Microcapsules Prepared by Ultrasonic Atomization for Intra-Articular Administration vol.11, pp.6, 2017, https://doi.org/10.3390/pharmaceutics11060249