• 제목/요약/키워드: $high-T_c$ superconducting elements

검색결과 17건 처리시간 0.021초

션트리액터의 자기결합을 이용한 초전도전류제한기를 구성하는 초전도소자들의 전력부담 분석 (Analysis on Power Burden of HTSC Elements Comprising SFCL using Magnetic Coupling of Shunt Reactors)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.42-47
    • /
    • 2010
  • The power burden of high-$T_c$ superconducting (HTSC) elements comprising superconducting fault current limiter (SFCL) using magnetic coupling of shunt reactors was analyzed. The magnetically coupled shunt reactors play a role in distributing the even power burden between HTSC elements comprising the SFCL, which contributes to the effective current limiting and recovery characteristics of the SFCL. It was confirmed through the comparative analysis on the SFCLs with both the magnetically coupled and the magnetically uncoupled shunt reactors that the magnetically coupled shunt reactors could improve the SFCL's performance by equalizing the power burden of HTSC elements.

RE3+원소가 첨가된 YBCO고온초전도체의 용융성장 및 초전도 특성 (Melt Textured Growth and Superconducting Properties of RE3+ Elements Doped YBCO Superconductors)

  • 김소정
    • 한국전기전자재료학회논문지
    • /
    • 제16권3호
    • /
    • pp.231-237
    • /
    • 2003
  • RE(Nd, Sm) elements doped (RE/Y)$_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$ [(RE/Y)1.8] high $T_{c}$ superconductors were directionally grown by Top Seed Melt Growth(TSMG) process in air atmosphere. The (001)melt-textured N $d_{1.8}$B $a_{2.4}$C $u_{3.4}$ $O_{7-X}$(Nd1.8) seed crystals were used for achieving the c-axis alignment large grains perpendicular to surface of the samples. The (RE/Y)1.8 SEM micrographs of the melt-textured (RE/Y)1.8 samples revealed that the nonsuperconducting (RE/Y)211 inclusions are uniformly distributed in the superconducting (RE/Y)123 matrix except the region very close to the Nd seed crystal. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The Melt-textured (RE/Y)1.8 samples showed an onset $T_{c}$=91K and sharp superconducting transition. Also, the magnetization value of the (RE/Y)1.8 samples were compared with those of Y1.8 sample at 77 K. 77 K. 77 K. 77 K.K.

Bi 고온 초전도 박막의 부착 공정 (Sticking processing of Bi high $T_c$ superconducting thin films)

  • 천민우;김태곤;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2005
  • Bismuth high Tc superconducting thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra low growth rate, and sticking processing of the respective elements are evaluated. The sticking processing of bismuth element in bismuth high Tc superconducting thin film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the bismuth phase formation in the co-deposition process.

  • PDF

Changes in superconducting properties of Nb films irradiated with Kr ion beam

  • Minju Kim;Joonyoung Choi;Chang-Duk Kim;Younjung Jo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.5-9
    • /
    • 2024
  • This study investigated the effect of Kr ion beam irradiation on the superconducting properties of Nb thin films, which are known for their high superconducting transition temperature (Tc) at ambient pressure among single elements. Using the Stopping and Range of Ions in Matter (SRIM) program, we analyzed the distribution of Kr ions and displacement per atom (DPA) after irradiation, finding a direct correlation between irradiation amount and DPA. In samples with stronger beam energy, deeper ion penetration, fewer ions remained, and higher DPA values were observed. X-ray diffraction (XRD) revealed that the Nb (110) peak at 38.5° weakened and shifted with increasing irradiation. Tc decreased in all samples after irradiation, more significantly in those with higher beam energy. Irradiation raised resistivity of the film and lowered the residual-resistivity ratio (RRR). AC susceptibility measurements were also consistent with these findings. This research could potentially lead to more efficient and powerful superconducting devices and a better understanding of superconducting materials.

변압기형 초전도전류제한기의 히스테리시스 특성 분석 (Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

Fault Current Limiting Characteristics of Flux-lock Type SFCL with Several Secondary Windings

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.193-197
    • /
    • 2005
  • We investigated fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL), which consisted of a primary winding and several secondary windings connected in series between $high-T_C$ superconducting (HTSC) thin films. Each YBCO thin film has a 2 mm wide and 42 cm long meander line with 14 stripes of different length. The power imbalance due to the slight difference of Ie between YBCO current limiting elements causes the significant power burden on YBCO element with lower $I_C$. We confirmed from our experiments that the mutual coupling between the primary winding and secondary windings of the flux-lock type SFCL reduced the power imbalance between YBCO current limiting elements compared with the resistive type SFCL connected in series.

HTS Broadband-Array Antenna for Satellite Communication

  • 정동철
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.178-182
    • /
    • 2002
  • Superconducting four-element patch array antenna was designed and fabricated using $high-T_{c}$ superconducting (HTS) thin film. The array antenna has single-feed circularly polarization and a resonance frequency of 11.85 GHz fur satellite communication system. To fabricate this antenna $YBa_2$$Cu_3$$O_{7-x}$(YBCO) superconducting thin films were deposited using rf-magnetron sputtering technique. Sequential rotation technique based on radiation elements($0^{\circ}$ , $90^{\circ}$, 1$80^{\circ}$, $270^{\circ}$ phase delay) was utilized to achieve circularly polarization. Simulated and measured results, the analysis on resonant frequency(fr), return loss, and bandwidth are presented. The results show that 10 dB return loss bandwidth of the array antenna is 11.04 GHz~12.59 GHz (13.15%) and 3dB axial ratio bandwidth is 11.42~12.52 GHz (9.2%).).).

  • PDF

고온초전도체를 이용한 마이크로파 전력분배기의 소형화 개발 (Miniaturized Development of Microwave Power Divider Using High-Tc Superconductors)

  • 정동철;유병화;곽민환;강광용;한병성
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.334-338
    • /
    • 2009
  • In this paper, We report the miniaturization of superconducting microwave power dividers based on lumped element equivalent circuits. To do this, we analyzed a conventional branch-type power divider by using an ABCD matrix under even and odd mode excitation. Then, we calculated each lumped element impedance throughout this analysis of a transmission line matrix. Also we simulated our equivalent circuits made of lumped elements by using a full wave analysis, em Sonnet. Our deign of microwave power divider based on simulated results was fabricated on high-$T_c$ superconducting thin films deposited on MgO substrate. Experimental results were reported in terms of bandwidth, center frequency, and phase difference between $S_{21}$ and $S_{31}$. We confirm that our design will be useful in the future microwave power systum.