• Title/Summary/Keyword: $a_1=a_2=a_3=1$

Search Result 160,039, Processing Time 0.147 seconds

Two Possible Space Groups of Ttis(tekaethylammonium) [bis(trimetaphosphate $\kappa^3O, O^', O^{"}$)] Vanadate(3-),$[V(P_3O_9)_2](NC_8H_{20})3$ (Tris(tetraethylammnnium) [bis(trimetaphosphate $\kappa^3O, O^', O^{"}$)] Vamdate(3-),$[V(P_3O_9)_2](NC_8H_{20})_3$,의 두가지 가능한 공간군)

  • 서일환;이진호
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Two possible space groups of the comfound, VP6N3018C24H:60, are: P 1, a=14.022(1), b=12.644(2), c= 12.640(1)A, a=8038(1), B=102.12(1), r=102.16(1), V=2124.1A3, Z=2, μ=0.47cm-1, d=1.46g/cm3, R=0.083 for 3350 independent reflections with Fo>4o IFI, and C2/c, a=19.32(2), b=16.32(2), c=14.02(1)A, B=105.98(5), β=105.98(5), V=4248.2A3, Z=4 R=0.083 for 1590 independent reflections with Fo>4c IFoI . In the space group P T, there are two monlecules in a unit cell. Vanadium atoms in the two monlecules occupy the two different special positions such that the complete monlecules are accomplished by the two independent center of symmetry. Therefore two different half molecules of bis(trimetaphosphate)vanadate and three molecules of tetraethylammonium are the asymmetric unit in a unit cell. In the space group C2/c, however, the vanadium atom is located at a special position with centrosymmetry, and a two-fold symmetry axis passes through C2/c, N2 and C25 atoms. Therefore the asymmrtic unit in a unit cell consists of a half molecule of bis(trimetaphosphate)vanadate and one and a half molecules of tetraethylammonium. All the molecular conformations in both space groups are very similar: six oxygen atoms coordinated to a vanadium atom in the bi s(trimetaphosphate)vanadate molecule form an octahedron and the four carbon atoms bonded to a nitrogen atom in the tetraethylammonium molecule are disordered so that the eight carbon atoms around nitrogen atom exhibit an irregular dodecahedral form.

  • PDF

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders (조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Effect of sintering additives on the densification behavior of reaction-bonded silicon nitride prepared by using coarse Si powders is discussed. Sintering additives such as 6 wt% $Y_2O_3$+1wt% $A1_2O_3$ (6YlA) did not give rise to full densification, while full densification was obtained by using the sintering additives such as 6wt% $Y_2O_3$+3 wt% $A1_2O_3$+ 2wt% $SiO_2$ (6Y3A2S) and 9wt% $Y_2O_3$+ 1.5wt% $A1_2O_3$+ 3wt% $SiO_2$ (9Yl.5A3S). In the case of 6Y3A2S addition, high fracture strength of 960 MPa and the fracture toughness of $6.5 MPa.m^{1/2}$ were obtained.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • → •

  • Park, Sangwon;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • We define injective and projective representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$. Then we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is projective if and only if each $M_1,\;M_2,\;M_3$ is projective left R-module and $f_1(M_1)$ is a summand of $M_2$ and $f_2(M_2)$ is a summand of $M_3$. And we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is injective if and only if each $M_1,\;M_2,\;M_3$ is injective left R-module and $ker(f_1)$ is a summand of $M_1$ and $ker(f_2)$ is a summand of $M_2$.

  • PDF

Synthesis of Certain Substituted Quinoxalines as Antimicrobial Agents (Part II)

  • Mohga.M.Badran;Khaled.A.M.Abouzid;M. H. M. Hussein
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.107-113
    • /
    • 2003
  • Several fused triazolo and ditriazoloquinoxaline derivatives such as 1-aryl-4-chloro-[1,2,4]triazolo[4,3-a]quinoxalines (3a-d), 4-alkoxy[1,2,4]triazolo[4,3-a]quinoxalines (4a,b), 4-substituted-amino-[1,2,4] triazolo[4,3-a]quinoxalines (5a-h), 1-(aryl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-thione (6), 4-(arylidenehydrazino )-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalines (10a-e) and [1,2,4]ditriazolo[4,3-a:3',4'-c]quinoxaline derivatives (11-13) have been synthesized and some of these derivatives were evaluated for antimicrobial and antifungal activity in vitro. It was found that compounds 3a and 9b possess potent antibacterial activity compared to the standard tetracycline.

The Crystal Structure of Fluoxymesterone, $C_{20}H_{29}FO_3$ (Fluoxymesterone, $C_{20}H_{29}FO_3$의 결정구조)

  • Kim, Ui-Seong;Park, Gwon-Il;Jo, Seong-Il
    • Korean Journal of Crystallography
    • /
    • v.4 no.1
    • /
    • pp.6-10
    • /
    • 1993
  • 11 β ,17 β -dihydroxy-9a-fluoro-l7a-methyl androst-4-en-3-one (Fluoxymesterone), CgoH29 FO,, orthorhombic, P2,2,2,, a=13.468(5) A, b= 19.554 (2)A, c=6.578(9)A, a=b=r=90˚, A (CuKa)=1.5406 A , Dm=1.289cm-3, Dc=1.299cm-3 and Z=4 at T=298k. The structure was solved by direct method using seminvariants of ggg Parity group and refined by the full-matrix least-square method, resulting model with reliability factor R=0.069 for 1098 unique reflection over 3σ . Ring A is an 1β-2a-half chair, 5 ring has a highly symmetrical chair conformation, C ring is in a distorted chair conformation and D ring is a 13aenveLope conformation. In the crystal structure, the molecules are packed with a hydrogen bond of 011-H23‥‥03(0.5+x, 1.5-y, 1.0-z) [1.94(9) A of H‥‥0.2.786(9)A of 0‥‥0 and 165(8) ˚ of

  • PDF

Diastereotopic $^1H-NMR$ Spectrum of Ethyl Octahydro-2,3-dioxo-6a-hydroxy-1-benzyl-cyclopenta[b]pyrrole-3a-carboxylate (Ethyl Octahydro-2,3-dioxo-6a-hydroxy-1-benzyl-cyclopenta[b]pyrrole-3a-carboxylate의 부분입체이성질성 핵자기공명 스펙트럼)

  • 김동우;김태흥;박영규;윤경원;서원준
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.205-209
    • /
    • 1995
  • Methylene protons of benzyl and ethyl ester in ethyl 1-benzyl-2, 3-dioxo-cyclopenta[b]-pyrrole-3a-carboxylate (A) exhibited opposite$^{1}$H-NMR spectral patterns mutually between magnetic equivalence and nonequivalence depending on concentration and temperature. The diastereotopic spectral data of compound A were reported with brief interpretation.

  • PDF

Synthesis of (${\pm}$)-cis-8-amino-l-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno [1,2-b][1,4]oxazine ((${\pm}$)-cis-8-Amino-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno [1,2-b][1,4]oxazine의 합성)

  • Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.488-493
    • /
    • 2008
  • 2-Aminothiazole ring as a bioisoster of catechol in dopamine has provided with good oral availability and lipophilic property. 2-Aminoindan, is a rigid form of dopamine, was evaluated as a dopamine D3 agonist with low neurotoxicity. Dopamine D3 agonist was evaluated as selective for the treatment of Parkinson's disease. In order to develop a novel dopamine D3 agonist, we tried to synthesize the aminothiazoloindenoxazine derivative that is a hybrid structure of aminoindenoxazine and thiazole ring. cis-2-Amino-1-indanol (2) was synthesized from 1,2-indandione-2-oxime by catalytic hydrogenation and it was treated with chloroacetyl chloride and NaH in benzene solution to give (${\pm}$)-cis-4,4a,5,9b-tetrahydroindeno[1,2-b][1,4]oxazin-3(2H)-one (6). Nitration of 6 by the mixed acid gave 8-nitro compound (7) and the carbonyl group of 7 was reduced with $LiAlH_4$ to afford compound (8). 8 was reduced to form (${\pm}$)-cis-8-amino-2,3,4,4a,5,9b-hexahydroindeno[1,2-b][1,4]oxazine (9) and finally it was cyclized with KSCN in glacial acetic acid to yield (${\pm}$)-cis-8-amino-2,3,4,4a,5,10b-hexahydrothiazolo[4,5-f]indeno[1,2-b][1,4]oxazine (10).

mPW1PW91 Conformational Study of Di-t-butyl-dinitro-tetramethoxysulfonylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • The structures of the conformers for 1,3-di-t-butyl-2,4-dinitro-tetramethoxysulfonylcalix[4]arene (1) and 1,2-di-t-butyl-3,4-dinitro-tetramethoxysulfonylcalix[4]arene (2) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and the differences between the various conformations (cone, partial-cone (PC), 1,2-alternate, and 1,3-alternate) of 1 and 2. For both compounds, the 1,3-alternate (1,3-A) conformers were calculated to be the most stable, which correlate very well with the experimental results. The orderings of the relative stability of 1 and 2 that resulted from the mPW1PW91/6-31G(d,p) calculations are the following: 1: 1,3-A (syn) > PC (syn) > PC (anti) > 1,2-A (anti) > CONE (syn); 2: 1,3-A (anti) > PC (anti) > PC (syn) > 1,2-A (anti) > 1,2-A (syn) > CONE (syn). The BLYP/6-31G(d) calculated IR spectra of the most stable 1,3-A conformers of 1 and 2 are compared.