• Title/Summary/Keyword: $ZrO_2-8%Y_2O_3$

Search Result 449, Processing Time 0.026 seconds

The Synthesis of $ZrO_2+12 mol% CeO_2$ Powders by Coprecipitation Technique and Their Sintering Behaviors (공침법을 이용한 $ZrO_2+12 mol% CeO_2$ 분말합성 및 소결특성)

  • 강희복;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.879-885
    • /
    • 1994
  • Coprecipitation technique was used to synthesize ZrO2+12 mol% CeO2 powders with ZrOCl2.8H2O and Ce(NO3)3.6H2O as starting materials. The powders were dried on different conditions such as distilled water, ethanol, and azeotropic distillation. The powders prepared by azeotropic distillation showed weak aggregation of particles and the average particle size of powders calcined at 85$0^{\circ}C$ for 1 hour was 0.19 ${\mu}{\textrm}{m}$. The optimum sintering temperature and holding time are 130$0^{\circ}C$ and 2.5~10 hours, respectively. Beyond the optimum conditions, a phase transition from tetragonal to monoclinic causes to produce cracks in the sintered bodies and to decrease the density.

  • PDF

Preparation of $Al_2O_3$-$ZrO_2$Composite Powders by the Use of Emulsions(IV) : Emulsion-Spray Pyrolysis Method (에멀젼을 이용한 $Al_2O_3$-$ZrO_2$ 복합분체의 제조(IV) : 에멀젼-분무열분해법)

  • 현상훈;김동준
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.955-964
    • /
    • 1990
  • A new process of emulsiion-spray pyrolysis for synthesizing ceramic powders was developed and the characteristics of Al2O3-20w/o ZrO2 composite powders prepared by this method were investigated. The composite powders synthesized in this study were spherical dense particles with 0.1~0.4${\mu}{\textrm}{m}$ of diameter. As found in powders derived by the emulsion-hot kerosene drying method, all zirconia in Al2O3-20w/o ZrO2 powders heat-treated at 120$0^{\circ}C$ was in the tetragonal form at room temperature. The relative density and the fracture toughness of composites sintered at 1$650^{\circ}C$ for 4hrs were 95% and 5.2MPa.m1/2, respectively.

  • PDF

A Study on the Dielectric and Pyroelectric Properties of the PSS-PT-PZ Ceramics Added $MnO_2$ ($MnO_2$가 첨가될 PSS-PT-PZ 세라믹의 유전 및 초전특성에 관한 연구)

  • Lee, Sung-Gap;Ryu, Ki-Won;Lee, Young-Hie;Bae, Seon-Gi;Park, Chang-Yub
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.194-197
    • /
    • 1991
  • In this study, $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$, added $MnO_2$ (0-0.30[mol%]) ceramics were fabricated by the mixed oxide method. The sintering temperature and time were $1250[^{\circ}C]$, 2[hr], respectively. In the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) specimens, relative dielectric constant and dielectric loss were minimum values 3.52, 0.003, respectively, and Curie temperature were highest values $256[^{\circ}C]$. Pyroelectric coefficient and voltage responsivity of the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$, and added $MnO_2$ (0.24[mol%]) specimen were good values, $6.73{\times}10^{-8}[C/cm^2K],\;125[v/W]$, respectively. Figure of merit of pyroelectric current, voltage and detectivity of the specimen, $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) were good values $2.714{\times}10^{-8}[Ccm/J],\;7.706{\times}10^{-11}[Ccm/J],\;2.640{\times}10^{-8}[Ccm/J]$, respectively. Voltage responsivity of the $(Pb_{0.99}La_{0.01})[(Sb_{1/2}Sn_{1/2})_{0.10}Ti_{0.25}Zr_{0.65}]O_3$ added $MnO_2$ (0.24[mol%]) specimens were decreased with increasing the chopper frequency.

  • PDF

Growth of $ZrO_2$ Single Crystal Using Flux Method (융제법의 의한 $ZrO_2$ 단결정 성장)

  • 이희훈;오근호;이종근;신건철
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.3-8
    • /
    • 1985
  • $ZrO_2$ single crystals were grown by slow cooling flux method using Borax $(Na_2B_4O_7)$ and KF as flux agent. The morphology of grown crystals was observed under a petrographic microscope. And the results obtained from grow crystals were as follows : 1. $ZrO_2$ crystals grown in the present work are morphologically divided into two shapes ; tabular and den-dritic crystals. 2. The maximum size of the crystals grown reaches to $4{\times}15{\times}2mm$ on edge into length at $ZrO_2$ 15mole% Borax 50mole% and KF 35mole% 3. $ZrO_2$ single crystals grown by flux method have monoclinc structure. 4. The content of KF as flux agents was limited by 60mole% KF. Since alumina crucible was heavily damaged by increasing KF content.

  • PDF

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Electrical, Optical and Structural Properties of ZrO2 and In2O3 Co-sputtered Electrdoes for Organic Photovoltaics (OPVs)

  • Cho, Da-Young;Shin, Yong-Hee;Chung, Kwun-Bum;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.473.1-473.1
    • /
    • 2014
  • We report on the characteristics of Zr-doped $In_2O_3$ (IZrO) films prepared by DC-RF magnetron cosputtering of $In_2O_3$ and $ZrO_2$ targets for use as a transparent electrode for high efficient organic solar cells (OSCs). The effect of $ZrO_2$ doping power on electrical, optical, structural, and surface morphology of the IZrO film was investigated in detail. At optimized $ZrO_2$ RF power of 50 W, the IZrO film exhibited a low sheet resistance of 20.71 Ohm/square, and a high optical transmittance of 83.9 %. Furthermore, the OSC with the IZrO anode showed a good cell-performance: fill factor of 61.71 %, short circuit current (Jsc) of $8.484mA/cm^2$, open circuit voltage (Voc) of 0.593 V, and power conversion efficiency (PCE) of 3.106 %. In particular, the overall OSC characteristics of the cell with the IZrO anode were comparable to those of the OSC with the conventional Sn-doped $In_2O_3$ (FF of 65.03 %, Jsc of $8.833mA/cm^2$, Voc of 0.608 V, PCE of 3.495 %), demonstrating that the IZrO anode is a promising alternative to ITO anode in OSCs.

  • PDF

Synthesis of Hybrid Sol Based on ZrO2-SiO2 System and their Coating Properties

  • Lee, Sang-Hoon;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.349-352
    • /
    • 2004
  • Organic-inorganic hybrid sol based on ZrO$_2$-SiO$_2$ system was prepared by sol-gel process. Firstly, ZrO$_2$ non-aqueous precursor sol was synthesized and then organosilane compounds which include epoxy silane (GPTS; 3-g1ycidoxypropyl tri-methoxysilane) and acryl silane (ACS; (3-(tri-methoxysilyl)propylmethacrylate)) were added to ZrO$_2$precursor sol for hybridization. Finally, com-mercial silica sol was added to improve the mechanical properties. Synthesized organic-inorganic Zr-hybrid sol was coated on polycarbonate substrate for enhancing it’s mechanical properties, especially hardness. Vicker’s hardness of polycarbonate sub strate was increased from 13.6 to 17.8 MPa and its pencil hardness was increased from 2 to 7 H, respectively, after coating and drying at 10$0^{\circ}C$ for 30 min.