• Title/Summary/Keyword: $ZrO_2$ support

Search Result 46, Processing Time 0.028 seconds

Hydrogen Reduction Characteristics of Ni-based Mixed Oxides: TPR and XRD Study (니켈 기반 혼합 산화물의 수소 환원 특성: TPR 및 XRD 연구)

  • Ryu, Jae-Chun;Cha, Kwang-Seo;Lee, Dong-Hee;Lee, Young-Seak;Park, Chu-Sik;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.89-97
    • /
    • 2010
  • $Al_2O_3$, $TiO_2$, $ZrO_2$, $Al_2O_3-TiO_2$, $Al_2O_3-ZrO_2$, 및 $TiO_2-ZrO_2$ 혼합 산화물을 지지체로 한 Ni 기반 혼합 산화물을 졸-겔법으로 제조하였다. 제조된 혼합 산화물은 1173K에서 열처리 한 후 구조적 특성 변화를 전자현미경 및 X-선 회절 분석을 이용하여 관찰하였으며, 수소를 이용한 승온 환원(TPR; temperature-programmed reduction) 실험을 통하여 1173K 까지 각 시료들의 환원 피크를 비교 고찰하였다. $Al_2O_3$ 또는 $TiO_2$ 가 혼합된 시료의 경우 1173K 에서의 열처리 후 니켈 알루미네이트 또는 니켈 티타네이트와 같은 새로운 결정상의 생성이 관찰되었으나 $ZrO_2$가 혼합된 경우에는 새로운 결정상의 생성이 관찰되지 않았다. TPR 결과에 의하면, $Al_2O_3$ 또는 $TiO_2$를 혼합된 시료의 경우 벌크 NiO의 TPR 결과와는 달리 생성된 새로운 결정상에 기인한 여러 개의 환원 피크가 나타났으나 $ZrO_2$를 혼합한 경우 벌크 NiO와 비슷한 환원 피크를 보였다. TPR 결과를 기초로 Arrhenius plot 으로부터 각 혼합 산화물들의 수소 환원 활성화 에너지를 도출하였다. $ZrO_2$를 지지체로 사용하는 경우 다른 혼합 산화물들보다 지지체로서 안정한 혼합 산화물상을 형성한다는 것을 지시하듯이 상대적으로 가장 낮은 활성화 에너지를 나타냈다.

Catalytic Conversion of Cellulose to Cellulose Acetate Propionate (CAP) Over SO42-/ZrO2 Solid Acid Catalyst

  • Leng, Yixin;Zhang, Yun;Huang, Chunxiang;Liu, Xiaocheng;Wu, Yuzhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1160-1164
    • /
    • 2013
  • The solid super acid catalyst $SO{_4}^{2-}$/$ZrO_2$ was prepared by impregnation method using $ZrO_2$ as the catalyst support. Catalyst forming was taken into consideration in order to separate catalyst from the mixture of cellulose acetate propionate (CAP). $Al_2O_3$ and sesbania gum powder were selected as binding agent and auxiliary agent respectively. The catalytic properties were evaluated through esterification of cellulose with acetic anhydride, propionic anhydride and characterized by XRD, FTIR and $NH_3$-TPD. In this paper, the effects of concentration of $H_2SO_4$ impregnated, calcination temperature, esterification temperature and esterification time on the yield, acyl content and viscosity of CAP were investigated. The results showed that $SO{_4}^{2-}/ZrO_2$ successfully catalyzed CAP synthesis over catalysts impregnated in 0.75 mol/L $H_2SO_4$ and calcined at $500^{\circ}C$. The yield, acetyl content and propionyl content of CAP reached the maximum value of 105.3%, 29.9% and 25.8% reacted at $50^{\circ}C$ for 8 h.

Fabrication of Crystalline $ZrO_2$ Nanotubes by ALD

  • Kim, Hyeon-Cheol;Panda, Sovan K.;Yu, Hyeon-Jun;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.241.1-241.1
    • /
    • 2011
  • Numerous possible applications for $ZrO_2$ nanotubes exist such as for catalyst support structures, for sensing or for applications as a solid state electrolyte. Especially, because of a large specific surface area, high efficiency for solid oxide fuel cell (SOFC) application at low temperature can be expected for nanotublar structures in even small size. A zirconium precursor, Tetrakis (ethylmethylamino) zirconium, TEMAZr and $H_2O$ oxidant were used to deposit$ZrO_2$ thin films on an anodized aluminum oxide (AAO) templates having sub-100nm cylindrical pores by atomic layer deposition (ALD) in the temperature range of 150~250$^{\circ}C$. The crystalline structures of as-prepared and post-annealed $ZrO_2$ nanotubes were characterized by x-ray diffraction and high-resolution transmission electron microscopy. The as-prepared samples at $150^{\circ}C$ and $200^{\circ}C$ were showed amorphous, whereas a mixed phase of tetragonal, monoclinic and amorphous polymorph was observed at $250^{\circ}C$. In the bulk, zirconia remains monoclinic phase up to $1,175^{\circ}C$, however, $ZrO_2$ nanotubes were showed tetragonal phase upon post thermal treatments merely at $400^{\circ}C$. This trend may be indicative of high-curvature surfaces of nanotubes and thereby the presence of intrinsic compressive strain. The amount of amorphous structures in the mixed phase as well as as-grown $ZrO_2$ nanotubes were also gradually decreased by subsequent heat treatment.

  • PDF

Catalytic Behavior of Ni/CexZr1-xO2-Al2O3 Catalysts for Methane Steam Reforming: The CexZr1-xO2 Addition Effect on Water Activation (메탄 습식 개질 반응용 Ni/CexZr1-xO2-Al2O3 촉매의 반응 특성: CexZr1-xO2 첨가에 의한 물 활성화 효과)

  • Haewon Jung;Huy Nguyen-Phu;Mingyan Wang;Sang Yoon Kim;Eun Woo Shin
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.479-486
    • /
    • 2023
  • In this study, we investigated the effect of the CexZr1-xO2 (CZ) addition onto Ni/Al2O3 catalysts on the catalytic performance in methane steam reforming. In the reaction results, the CZ-added Ni/Al2O3 catalyst showed higher CH4 conversion and H2 yield under the same reaction conditions than Ni/Al2O3. From the characterization data, the two catalysts had similar support porosity and Ni dispersion, confirming that the two properties could not determine the catalytic performance. However, the oxygen vacancy over the CZ-added Ni/Al2O3 catalyst induced an efficient steam activation at low reaction temperatures, resulting in an increase in the catalytic activity and H2 yield.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.

Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries (열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발)

  • Kim, Ki Jae
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.3
    • /
    • pp.49-54
    • /
    • 2017
  • We develop a ceramic composite separator prepared by coating $ZrO_2$ nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer on a polyvinyl alcohol (PVA) mechanical support prepared by electrospinning technique to improve thermal properties. The gurley number of the ceramic composite separator shows much lower value than that of a PE separator even though it possesses the polymeric coating layer with ceramic nanoparticles. In addition, the proposed sample shows higher electrolyte uptake than PE separator, leading to enhancing the ionic conductivity of the proposed sample and, by extension, the rate discharge properties of lithium ion batteries. Thermal stability of the ceramic composite separator is dramatically improved without any degradation in electrochemical performance compared to the performance of conventional PE separators.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.