• Title/Summary/Keyword: $ZrO_2$ substrates

Search Result 115, Processing Time 0.024 seconds

Epitaxial Growth of Pb(Zr, Ti)$O_3$Thin Films on $LaAlO_3$ Substrates by Dipping-Pyrolysis Process

  • Hwang, Kyu-Seog;Kim, Byung-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.253-256
    • /
    • 1997
  • Epitaxially grown Pb(Zr, Ti)O$_3$thin films were prepared on LaAlO$_3$substrates by the dipping pyrolysis process using metal naphthenates as starting materials Homogeneous Pb-Zr-Ti solutions with toluene were spin-coated onto the substrates and pyrolyzed at 50$0^{\circ}C$ Highly oriented Pb(Zr, Ti)O$_3$films confirmed by X-ray diffraction $\theta$-2$\theta$ scans were obtained by heat-treated at 75$0^{\circ}C$ in air The X-ray pole-figure analysis and reciprocal-space mapping of the resulting 0.6$\mu\textrm{m}$ films showed that the thin films comprising the c-axis oriented tetragonal phase have an epitaxial relationship with the LaAlO$_3$substrates.

  • PDF

Resistive Switching Properties of Cr-Doped SrZrO3 Thin Film on Si Substrate (실리콘 기판위에서의 Cr-Doped SrZrO3 박막의 저항변화 특성)

  • Yang, Min-Kyu;Ko, Tae-Kuk;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.241-245
    • /
    • 2010
  • One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped $SrZrO_3$ perovskite thin films were deposited on a $SrRuO_3$ bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the $SrZrO_3$:Cr perovskite and the $SrRuO_3$ bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than $10^2$. A pulse test showed the switching behavior of the Pt/$SrZrO_3:Cr/SrRuO^3$ device under a pulse of 10 kHz for $10^4$ cycles. The resistive switching memory devices made of the Cr-doped $SrZrO_3$ thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.

Structural and Electrical Properties of ZrO2 Films Coated onto PET for High-Energy-Density Capacitors

  • Park, Sangshik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2014
  • Flexible $ZrO_2$ films as dielectric materials for high-energy-density capacitors were deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $ZrO_2$ films were dependent on the sputtering pressure and gas ratio. Although $ZrO_2$ films were deposited at room temperature, all films showed a tetragonal crystalline structure regardless of the sputtering variables. The surface of the film became a surface with large white particles upon an increase in the $O_2/Ar$ gas ratio. The RMS roughness and crystallite size of the $ZrO_2$ films increased with an increase in the sputtering pressure. The electrical properties of the $ZrO_2$ films were affected by the microstructure and roughness. The $ZrO_2$ films exhibited a dielectric constant of 21~38 at 1 kHz and a leakage current density of $10^{-6}{\sim}10^{-5}A/cm^2$ at 300 kV/cm.

The ferroelectric $Pb(Zr_{0.2}Ti_{0.8})O_3$ thin film growth on $SrRuO_3$/Si structure by pulsed laser deposition (펄스 레이저 증착법으로 $SrRuO_3$/Si 구조위에서 증착된 강유전체 $Pb(Zr_{0.2}Ti_{0.8})O_3$ 박막)

  • Xian, Cheng-Ji;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.302-302
    • /
    • 2007
  • The $SrRuO_3$/Si thin film electrodes are grown with (00l) preferred orientations on SrO buffered-Si (001) substrates by pulsed laser deposition. The optimum conditions of SrO buffer layers for $SrRuO_3$ preferred orientations are the deposition temperature of $700^{\circ}C$, deposition pressure of $1\;{\times}\;10^{-6}\;Torr$, and the thickness of 6 nm. The 100nm thick-$SrRuO_3$ bottom electrodes deposited above $650^{\circ}C$ on SrO buffered-Si (001) substrates have a rms roughness of approximately $5.0\;{\AA}$ and a resistivity of 1700 -cm, exhibiting a (00l) relationship. The 100nm thick-$Pb(Zr_{0.2}Ti_{0.8})O_3$ thin films deposited at $575^{\circ}C$ have a (00l) preferred orientation and exhibit $2P_r$ of $40\;C/cm^2$, $E_c$ of 100 kV/cm, and leakage current of about $1\;{\times}\;10^{-7}\;A/cm^2$ at 1V.

  • PDF

Composition Control of YSZ Thin Film Prepared by MOCVD

  • Matsuzaki, Tomokazu;Okuda, Norikazu;Shinozaki, Kazuo;Mizutani, Nobuyasu;Funakubo, Hiroshi
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.134-137
    • /
    • 2000
  • Zirconia films stabilized b $Y_2O_3$, YSZ, films were deposition by metal organic chemical vapor deposition (MOCVD) onto various kind of substrates. $Y_2O_3$, $ZrO_2$and the mixtures of these two were deposited and characterized. The deposition rate, the film composition and the structure could be systematically varied through the $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_H_9)_4$source gas ratios and the deposition temperature. The Y/Zr ratio in YSZ film could be adjusted by controlling the ratio of $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_4H_9)_4$partial pressures. This is because the ratios of the deposition rates of Y and Zr atoms in $Y_2O_3$and $ZrO_2$films to those in YSZ films, Ф, are constant irrespective of the input gas concentration. However, the Y/Zr ratio was found to be smaller than that estimated based on the deposition rates of un-mixed $Y_2O_3$and $ZrO_2$films. This is because the Фs of Y and Zr atoms are not equal. The activation energy of $Y_2O_3$component in YSZ films was similar to that of $ZrO_2$component in YSZ films. These YSZ values were more than 4 times larger than those of un-mixed $Y_2O_3$or $ZrO_2$films.

  • PDF

Deposition Characteristics of Lead Titanate Films on $RuO_2$ and Pt Substrates Fabricated by Chemical Vapor Deposition ($RuO_2$ 및 Pt 기판에서 $PbTiO_3$박막의 화학기상 증착특성에 관한 연구)

  • Jeong, Su-Ok;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.282-289
    • /
    • 2000
  • $PbTiO_3$ films were fabricated by electron cyclotron resonance plasma enhanced chemical vapor deposition(ECR-PECVD). Deposition characteristics of $PbTiO_3$films on $RuO_2$ and Pt substrates were investigated with varying the flow rate of metalorganic source and substrate temperature. The residence time of Pb-oxide molecules in much longer on $RuO_2$ than on Pt substrate, while the perovskite nucleation is more difficult on $RuO_2$ than on Pt substrate. Therefore, the process conditions to obtain the single perovskite $PbTiO_3$ phase are more restricted on $RuO_2$ than on Pt substrates. An introduction of Ti-oxide seed layer increases perovskite nucleation density and thus enlarges the process window to obtain the single perovkite phase. The introduction of Ti-oxide seed layer make the PZT film that Ti-components of $PbTiO_3$ are partially substituted with Zr atoms have single perovskite phase for the wide range of Zr/(Zr+Ti) concentration ratios.

  • PDF

Effect of Prefiring Time on Epitaxy and crystallinity of Pb(Zr, Ti)O$_3$ Thin Films in Low Temperature Pyrolysis (저온도포열분해에 의해 제조된 Pb(Zr, Ti)O$_3$ 박막의 에피탁시와 결정화도에 미치는 전열처리 시간의 영향)

  • 황규석;이형민;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.969-973
    • /
    • 1998
  • Pb(Zr, Ti)O3 (PZT) (Zr:Ti= 52: 48) thin films were prepared on MgO(100) substrates by dipping-py-rolysis process using metal naphthenates as starting materials. Thin films were fabricated by spin coating technique and the precursor films were prefired at 20$0^{\circ}C$ in air for 0.5, 1, 2, 3, and 24 h followed by final heat treatment at 75$0^{\circ}C$ for 30min. Film prefired for 24 h lost orientational properties and pole figure analysis showed the lost of the epitaxial relationship between the films and substrate while highly a/c-axis oriented thin films were obtained for the samples prefired for 1, 2, and 3h.

  • PDF

Ferroelectric properties of BLT films deposited on $ZrO_2$Si substrates

  • Park, Jun-Seo;Lee, Gwang-Geun;Park, Kwang-Hun;Jeon, Ho-Seung;Im, Jong-Hyun;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.172-173
    • /
    • 2006
  • Metal-ferroelectric-insulator-semiconductor (MFIS) structures with $Bi_{3.35}La_{0.75}Ti_3O_{12}$ (BLT) ferroelectric film and Zirconium oxide ($ZrO_2$) layer were fabricated on p-type Si(100). $ZrO_2$ and BLT films were prepared by sol-gel technique. Surface morphologies of $ZrO_2$ and BLT film were measured by atomic force microscope (AFM). The electrical characteristics of Au/$ZrO_2$/Si and Au/BLT/$ZrO_2$/Si film were investigated by C-V and I-V measurements. No hysteretic characteristics was observed in the C-V curve of the Au/$ZrO_2$/Si structure. The memory window width m C-V curve of the Au/BLT/$ZrO_2$/Si diode was about 1.3 V for a voltage sweep of ${\pm}5$ V. The leakage current of Au/$ZrO_2$/Si and Au/BLT/$ZrO_2$/Si structures were about $3{\times}10^{-8}$ A at 30 MV/cm and $3{\times}10^{-8}$ A at 3 MV/cm, respectively.

  • PDF

Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method (졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성)

  • 박상식;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.909-915
    • /
    • 2003
  • Anodic oxide films on aluminum play an important role as a dielectrics in aluminum electrolytic capacitor. In order to obtain the high capacitance, ZrO$_2$ films were coated on aluminum foils by sol-gel method and then, the properties of anodized films were studied. The coating and drying of the films were repeated 4-10 times and annealed at 300~$600^{\circ}C$ and the triple layer of ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$ was formed onto aluminum substrates after anodizing of ZrO$_2$/Al film. The thickness of $Al_2$O$_3$ layer was decreased with increasing the annealing temperature due to the densification of ZrO$_2$ film. The ZrO$_2$ films were crystallized even at 30$0^{\circ}C$ and showed nanocrystalline structure. The. capacitance of aluminum foil annealed at low temperature was higher than that at high temperature. The increase of capacitance was due to the high capacitance of ZrO$_2$ film annealed at low temperature. The capacitance of ZrO$_2$ coated aluminum increased about 3 times compared to that without a ZrO$_2$ layer after anodizing to 400 V. From these results, the aluminum foils with composite oxide layers are found to be applicable to the aluminum electrolytic capacitor.