• Title/Summary/Keyword: $ZrB_2$

Search Result 342, Processing Time 0.024 seconds

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

Microwave Dielectric Properties of $(Pb_{1-x}Ca_x)ZrO_3$ and $(Pb_{0.63},Ca_{0.37-x}M_x)ZrO_3$ (M = Mg, Sr) Ceramics ($(Pb_{1-x}Ca_x)ZrO_3$$(Pb_{0.63},Ca_{0.37-x}M_x)ZrO_3$ 세라믹스의 고주파 유전 특성)

  • 윤중락;이헌용
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.533-540
    • /
    • 1997
  • The microwave dielectric properties of ((P $b_{1-x}$ C $a_{x}$)Zr $O_3$ and (P $b_{0.63}$,C $a_{0.37-x}$ $M_{x}$)Zr $O_3$(M=Mg,Sr) ceramics were investigated. In (P $b_{1-x}$ C $a_{x}$)Zr $O_3$ (X=0.33~0.40) ceramics, high quality factor and small temperature coefficient of resonant frequency were obtain in (P $b_{0.63}$C $a_{0.37}$)Zr $O_3$with perovskite structure. In the case of (P $b_{0.63}$C $a_{0.37-x}$M $g_{x}$)Zr $O_3$ dielectric constant temperature coefficient of resonant frequency increased and quality factor decreased due to increase of polarization of A-O bonding. When replacing Ca ion with Sr ion with large ion radius, polarization decreased with increased of bonding length and thus dielectric constant and temperature coefficient of resonant frequency decreased.decreased.creased.

  • PDF

Polymerization of Ethylene over $Cp_2ZrCl_2$ Catalyst Supported on Montmorillonite (Montmorillonite에 담지된 $Cp_2ZrCl_2$ 촉매를 이용한 에틸렌 중합특성 연구)

  • Ahn, Sung-Hyun;Lee, Sung-Ho;Choi, Moo-Seok;Im, Jun-Seop;Sheikh, Rizwan;Cho, Deug-Hee;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • Heterogeneous metallocene catalysts supported on montmorillonite (MMT), [$Cp_2ZrCl_2$/MMT, $Cp_2ZrCl_2$/MAO/MMT, and $Cp_2ZrCl_2$ + MAO/MMT], were prepared with three different methods of immobilization and tested for ethylene polymerization. The heterogeneous catalysts immobilized on organo clay (30B-MMT) showed the higher metal loading and polymerization activity than those immobilized on natural clay $Na^+-MMT$. These results suggest that the hydroxyl groups of organo clay interlayers react with the MAO and catalyst through the chemical bond. The metallocene catalyst supported directly on MMT showed lower activity for ethylene polymerization compared to the homogeneous systems, while MMT/MAO/$Cp_2ZrCl_2$, catalysts treated with MAO before impregnation, showed a higher activity. The polymers obtained from MMT-supported catalysts have higher melting point, molecular weight and molecular weight distributions than those of homogeneous catalysts. The polymer particles with increasing significant size. Ethylene polymerization over 30B-MMT/MAO/$Cp_2ZrCl_2$ catalyst was also performed varying the process variables to optimize the process conditions.

A study on the luminescence characterization of red long persistent phosphors by the $B_2O_3$ addition ($B_2O_3$ 첨가에 의한 적색 축광성 형광체의 발광특성에 관한 연구)

  • Hwang, Ku-Hyeon;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.22-26
    • /
    • 2008
  • Red long persistent phosphors of $CaZrO_3$ : Pr was synthesized by a solid reaction method. $CaCO_3\;and\;ZrO_2$ were used as hosting materials and Pr was doped as luminescence center element, and $B_2O_3$ was used as flux. The XRD pattern confirmed crystalline phase of the phosphor, and photoluminescence investigation showed emission spectrum at $480{\sim}570nm\;and\;590{\sim}700nm$. Phosphor samples were synthesized with $B_2O_3$ flux concentration of 1, 5, 10%, and luminescent peak of maximum intensity at 494 nm was obtained for 1% $B_2O_3$. Luminescent peak of red color at 620 nm was of highest intensity for 10% $B_2O_3$.

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Effect of the Size and Amount of SiC on the Microstructures and Thermal Conductivities of ZrB2-SiC Composite Ceramics (ZrB2-SiC 복합세라믹스의 미세구조와 열전도도에 미치는 SiC 크기와 첨가량의 영향)

  • Kim, Seong-Won;Kwon, Chang-Sup;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.379-384
    • /
    • 2012
  • This paper reports the microstructures and thermal conductivities of $ZrB_2$-SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of $ZrB_2$-x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.

Effect of Additives on Synthesis of $\textrm{ZrB}_{2}$ By SHS Process and Its Densification (SHS법에 의한 붕화지르코늄의 합성 및 치밀화에 미치는 첨가제의 영향)

  • Lee, Yun-Bok;Gwak, Cheol-Sang;Kim, Sang-Bae;Kim, Yeong-U;Park, Hong-Chae;O, Gi-Dong
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.653-658
    • /
    • 1998
  • ZrO2, B2O3 및 AI을 사용하여 SHS법에 의한 붕화지르코늄을 합성을 하고 산화철과 알루미늄 분말의 첨가가 합성물의 치밀화에 미치는 영향에 대하여 검토하였다. 합성물중에 존재하는 결정상은 대부분이 ZrB2와 $\alpha$-AI2O3상이었다. 산화붕소와 알루미늄의 몰비가 1.0:3.3이상일 때 합성물의 치밀화는 크게 증가하였고, ZrB2 입자도$\alpha$-AI2O3용융상과 더불어 조대하였다. 산화철 1목에 대하여 알루미늄을 1-3몰을 첨가한 것과 산화철 1.5몰에 대하여 알루미늄을 3몰 첨가시 $\alpha$-AI2O3를 중심으로하는 슬라그상으로부터 용융상의 분이가 가능하였고, 이들 용융상에 존재하는 결정상은 ZrB2이외에 Fe, Fe2B, Zr2Fe상이었다. 용융상의 상대밀도는 산화철 1몰에 대하여 알루미늄을 1몰 첨가시 83.2%인 반면에 그 이상의 첨가량에 대해서는 치밀화는 크게 증가하여 알루미늄을 3몰 첨가한 경우 상대밀도는 93.7%로서 최대를 나타내었다.

  • PDF