Browse > Article

Polymerization of Ethylene over $Cp_2ZrCl_2$ Catalyst Supported on Montmorillonite  

Ahn, Sung-Hyun (Research Center for Environment Resources & Processes, Korea Research Institute of Chemical Technology)
Lee, Sung-Ho (Department of Chemical Engineering, Hanyang University)
Choi, Moo-Seok (Department of Chemical Engineering, Hanyang University)
Im, Jun-Seop (Department of Chemical Engineering, Hanyang University)
Sheikh, Rizwan (Department of Chemical Engineering, Hanyang University)
Cho, Deug-Hee (Research Center for Environment Resources & Processes, Korea Research Institute of Chemical Technology)
Park, Yeung-Ho (Department of Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.24, no.1, 2013 , pp. 55-61 More about this Journal
Abstract
Heterogeneous metallocene catalysts supported on montmorillonite (MMT), [$Cp_2ZrCl_2$/MMT, $Cp_2ZrCl_2$/MAO/MMT, and $Cp_2ZrCl_2$ + MAO/MMT], were prepared with three different methods of immobilization and tested for ethylene polymerization. The heterogeneous catalysts immobilized on organo clay (30B-MMT) showed the higher metal loading and polymerization activity than those immobilized on natural clay $Na^+-MMT$. These results suggest that the hydroxyl groups of organo clay interlayers react with the MAO and catalyst through the chemical bond. The metallocene catalyst supported directly on MMT showed lower activity for ethylene polymerization compared to the homogeneous systems, while MMT/MAO/$Cp_2ZrCl_2$, catalysts treated with MAO before impregnation, showed a higher activity. The polymers obtained from MMT-supported catalysts have higher melting point, molecular weight and molecular weight distributions than those of homogeneous catalysts. The polymer particles with increasing significant size. Ethylene polymerization over 30B-MMT/MAO/$Cp_2ZrCl_2$ catalyst was also performed varying the process variables to optimize the process conditions.
Keywords
metallocene catalyst; montmorillonite; ethylene polymerization; $Cp_2ZrCl_2$; immobilization method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. I. Woo, Y. S. Ko, and T. K. Han, Macromol. Rapid Commun., 16, 489 (1995).   DOI   ScienceOn
2 G. G. Hlatky, Chem. Rev., 100, 1347 (2000).   DOI   ScienceOn
3 J. C. W. Chien, Top., Catal., 7, 23 (1999).   DOI
4 K. Weiss, C. Wirth-Pfeifer, M. Hofmann, S. Botzenhardt, H. Lang, K. Bruning, and E. Meichel, J. Mol. Catal. A: Chem., 182-183, 143 (2002).   DOI   ScienceOn
5 S. J. Kim, W. Y. Lee, Y. H. Park, W. S. Huh, and Y. G. Ko, Polym. Eng. Sci., 43, 1011 (2003).   DOI   ScienceOn
6 J. C. W. Chien and D. He, J. Polym. Sci. Part A: Polym. Chem., 29, 1585 (1991).
7 K. Soga, H. J. Kim, and T. Shiono, Makromol. Chem., Rapid Commun., 14, 765 (1993).   DOI   ScienceOn
8 C. Janiak and B. Rieger, Angew. Makromol. Chem., 215, 35 (1994).   DOI   ScienceOn
9 E. Gianetti, G. M. Nicoletti, and R. Mazzoch, J. Polym. Sci. Polym. Chem., 197, 1537 (1996).
10 E. Gianetti, G. M. Nicoletti, and R. Mazzoch, J. Polym. Sci. Polym. Chem., 23, 2117 (1985).   DOI
11 J. S. Chung, G. Tairova, Y. Zhang, J. C. Hsu, K. B. McAuley, and D. W. Bacon, Korean J. Chem. Eng., 19, 597 (2002).   DOI   ScienceOn
12 G. Zohuri, R. Jamjah, and S. Ahmadjo, Iranian Polym. J., 14, 111 (2005).
13 A. Montagna, A. H. Dekmezian, and R. M. Burkhart, Chemtech, 27, 26 (1997).
14 M. C. Sacchi, D. Zucchi, I. Tritto, and P. Locatelli, Macromol. Rapid Commun., 16, 581 (1995).   DOI   ScienceOn
15 K. Soga, T. Uozumi, M. Saito, and T. Shiono, Macromol. Chem. Phys., 195, 1503 (1994).   DOI   ScienceOn
16 M. Kaminaka and K. Soga, Makromol. Chem. Rapid Commun., 12, 367 (1991).   DOI