• Title/Summary/Keyword: $ZrB_2$

Search Result 342, Processing Time 0.03 seconds

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Electrical Properties of SiC Composites by Transition Metal (천이금속에 따른 SiC계 복합체의 전기적 특성)

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF

EFFECT OF THE MICROSTRUCTURE ON MAGNETIC PROPERTIES OF $Nd_{2}(Fe,Co)_{14}B_{1}Ga$-BASED ALLOYS DURING HDDR PROCESS

  • Jeung, W.Y.;Lee, S.H.;Vintaikin, B.E.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.408-411
    • /
    • 1995
  • Microstructure and magnetic properties of $Fe-Nd_{13.5}-Co_{15}-B_{6-8}Ga_{0-1}-Zr_{0.2-1}$ alloys during HDDR process were studied. $ZrB_{2}$ phase was detected and identified by X-Ray diffraction. Influence of Ga, Zr and Ga+Zr additions on phase relations at different stages of HDDR process was studied by X-ray diffraction and magnetic measurements.

  • PDF

Characterization of Oxide Scales Formed on Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B (Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B 합금의 고온산화막분석)

  • Kim, Gi-Yeong;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.220-224
    • /
    • 2002
  • The oxide scales formed on $Ni_3Al$-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B after oxidation at 900, 1000 and 110$0^{\circ}C$ in air were studied using XRD, SEM, EPMA and TEM. The oxide scales consisted primarily of $NiO,\; NiAl_2O_4,\;{\alpha}-Al_2O_3,\; monoclinic-ZrO_2,\; and \;tetragonal-ZrO_2$. The outer layer of the oxide scale was rich in Ni-oxides, whereas the internal oxide stringers were rich in Al-oxides and $ZrO_2$. Within the above oxide scales, Cr and Mo tended to exist as dissolved ions.

Properties of a SiC-$ZrB_2$ Composite by condition of SPS on/off Pulse Time (SPS on/off Pulse Time 조건에 따른 SiC-$ZrB_2$ 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Lee, Hee-Seung;Park, Jin-Hyoung;Kim, In-Yong;Kim, Cheol-Ho;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.314-314
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 40vol.% of Zirconium Diboride(hereafter, $ZrB_2$) powders with Silicon Carbide(hereafter, SiC) matrix. TheSiC+40vol.%$ZrB_2$ composites were manufactured through Spark Plasma Sintering(hereafter, SPS) under argon atmosphere, uniaxial pressure of 50MPa, heating rate of $100^{\circ}C$/min, sintering temperature of $1,500^{\circ}C$ and holding time of 5min. But one on/off pulse sequence(one pulse time: 2.78ms) is 10:9(hereafter, SZ10), and the other is 48:8(hereafter, SZ48). The physical and mechanical properties of the SZ12 and SZ48 were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffraction(hereafter, XRD) analysis. The apparent porosity of the SZ10 and SZ48 composites were 9.7455 and 12.2766%, respectively. The SZ10 composite, 593.87MPa, had higher flexural strength than the SZ48 composite, 324.78MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had Positive Temperature Coefficient Resistance(hereafter, PTCR).

  • PDF

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

A Study on the Magnetic Properties of YIG Ferrites with Zr-Substitution (Zr치환에 따른 YIG계 페라이트의 자기적 특성 연구)

  • 양승진;윤종남;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.428-433
    • /
    • 2003
  • In this study, we investigated the variation of microstructural and electromagnetic properties of YIG ferrites for Isolator/Circulator application with the sintering temperature and Zr addition. The composition of the ferrites was Y$_{2.1}$Ca$_{0.9}$Fe$_{4.4-x}$V$_{0.5}$In$_{0.05}$Al$_{0.05}$Zr$_{x}$O$_{12}$ with x=0, 0.05, 0.1 and 0.2. The YIG ferrites were prepared by the conventional ceramic sintering process. The Zr-substituted YIG ferrite, Y$_{2.1}$ Ca$_{0.9}$Fe$_{4.4-x}$V$_{0.5}$In$_{0.05}$Al$_{0.05}$ Zr$_{x}$O$_{12}$ showed the highest saturation magnetization (1097 gauss) at x=0.1. The microwave properties were shown as isolation of 18.60 dB and insertion loss of 0.45 dB at x=0.2. Additionally, Zr-substitution was effective in decreasing ferromagnetic resonance linewidth with Zr content.

Properties and Manufacture of the $\beta-SiC-ZrB_2$ Composited Densified by Liquid-Phase Sintering. (액장 소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성)

  • Sin, Yong-Deok;Ju, Jin-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.92-97
    • /
    • 1999
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-Sic$+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3(6:4wt%)$. In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$, gains were observed between $\beta-SiC$ and $ZrB_2$, and the relative density was over 97.6% of the theoretical density. Phase analysis of the composites by XRD revealedmostly of $\alpha$-SiC(6H, 4H), $ZrB_2$, and weakly $\beta-SiC$(15R) phase. The fracture toughness decreased with increasing $Al_2O_3+Y_2O_3$ contents and showed the highest of $6.37MPa.m^{\fraction ane-half}$ for composite added with 4wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity increased with increasing $Al_2O_3+Y_2O_3$contents and showed the lowest of $1.51\times10^{-4}\Omega.cm$ for composite added with $Al_2O_3+Y_2O_3$ additives at $25^{\circ}C$. This reason is the increasing tendency of pore formation according to amount of liquid forming additives $Al_2O_3+Y_2O_3$. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF