• 제목/요약/키워드: $W_{3}$ powders

검색결과 207건 처리시간 0.029초

텅스텐(W) 원료에 따른 WO3/TiO2 SCR 촉매의 제조 및 촉매능 (Synthesis of WO3/TiO2 catalysts from different tungsten precursors and their catalytic performances in the SCR)

  • 이병우;이진희
    • 한국결정성장학회지
    • /
    • 제24권5호
    • /
    • pp.213-218
    • /
    • 2014
  • Anatase $TiO_2$에 각기 다른 텅스텐(W) 함유원료와 제조방법을 적용하여 $WO_3$ 촉매가 첨가된 SCR(selective catalytic reduction)용 분말을 합성하였으며, W 촉매 첨가가 합성분말의 상합성 및 SCR 촉매능에 미치는 영향에 대해 연구하였다. 촉매의 지지체인 $TiO_2$는 침전법으로 anatase 상으로 합성되었으며, anatase에서 고온상인 rutile로의 상전이 온도는 $1200^{\circ}C$였으나, $WO_3$를 10 wt% 첨가할 경우 이 상전이 온도는 $900^{\circ}C$로 낮아졌다. 건식으로 $WO_3$ 분말을 직접 첨가하여 $WO_3(10wt%)/TiO_2$를 제조한 경우 $350^{\circ}C$에서 $NO_X$ 제거 촉매능이 최고점에 이르나 온도증가에 따라 그 효율이 상당히 감소하였다. 암모늄-메타-텅스테이트를 습식으로 첨가하여 제조한 경우, 보다 고온인 $450^{\circ}C$에서 촉매능이 최고점에 이르렀으며 온도에 따른 효율감소 폭도 적었다. 이와 같은 경향은 $WO_3$$V_2O_5$를 동시 첨가하여 제조한 $V_2O_5(5wt%)-WO_3(10wt%)/TiO_2$ 촉매에서도 나타났다. 즉, 암모늄-메타-텅스테이트를 습식으로 첨가한 경우, $WO_3$를 직접 첨가한 경우에 비해 넓은 온도범위($300^{\circ}C{\sim}500^{\circ}C$)에 걸쳐 90 %에 이상의 우수한 $NO_X$ 변환효율을 보였다.

볼밀링한 WO3-CuO 나노복합분말의 조성에 따른 수소환원 거동 (The Effect of Composition on Hydrogen Reduction Behavior of Ball-milled WO3-CuO Nanocomposite Powders)

  • 정성수;강윤성;이재성
    • 한국분말재료학회지
    • /
    • 제13권3호
    • /
    • pp.205-210
    • /
    • 2006
  • The effect of Cu content on hydrogen reduction behavior of ball-milled $WO_3$-CuO nanocomposite powders was investigated. Hydrogen reduction behavior and reduction percent(${\alpha}$) of nanopowders were characterized by thermogravimetry (TG) and hygrometry measurements. Activation energy for hydrogen reduction of $WO_3$ nanopowders with different Cu content was calculated at each heating rate and reduction percent(${\alpha}$). The activation energy for reduction of $WO_3$ obtained in this study existed in the ranging from 129 to 139 kJ/mol, which was in accordance with the activation energy for $WO_3$ powder reduction of conventional micron-sized.

볼밀링한 W-20wt%Cu 분말로 제조된 금속사출성형 부품의 조밀화 (Densification of Metal Injection Molding Parts Made of Ball Milled W-20%Cu Powders)

  • 김순욱;류성수;문인형
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.228-236
    • /
    • 2000
  • An investigation was carried out on the possibility whether the ball-milling process of low energy could successfully improve the packing density and flowability for MIM application in W-20wt%Cu system. In this study, W-20wt%Cu powder mixture was prepared by ball-milling. W powder was not fractured by low mechanical impact energy used in the present work during the critical ball-milling time, but the ductile Cu powder was easily deformed to the 3 dimensional equiaxed shape, having the particle size similar to that of W powder. The ball-milled mixture of W-20wt%Cu powder had the more homogeneous distribution of each component and the higher amount of powder loading for molding than the simple mixture of W-Cu powder with an irregular shape and a different size. Accordingly, the MIM W(1.75)-20wt%Cu powder compacts were able to be sintered to the relative density of 99% by sintering at $1400^{\circ}C$ for one hour.

  • PDF

열처리 온도 및 분위기가 TiH2-WO3 혼합분말의 미세조직에 미치는 영향 (Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures)

  • 이한얼;김연수;오승탁
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.41-45
    • /
    • 2017
  • The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled $TiH_2-WO_3$ powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined $TiH_2$ particles are successfully prepared by ball milling for 24h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, $Ti_2O$, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at $600^{\circ}C$ in a hydrogen atmosphere, show $TiH_2$ and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at $900^{\circ}C$ exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of $TiH_2$, the hydrogen reduction of $WO_3$ and the partial oxidation of dehydrogenated Ti.

불고용 W-Cu-Pb삼원계의 기계적 합금화 거동 (Mechanical Alloying Behavior of Immiscible W-Cu-Pb Ternary System)

  • 류성수
    • 한국분말재료학회지
    • /
    • 제5권3호
    • /
    • pp.220-226
    • /
    • 1998
  • W-12.8wt%Cu-7.2%Pb powders were milled at room temperature and $-100^{\circ}C$ to investigate the mechanical alloying behavior of immiscible W-Cu-Pb system and the effect of milling temperature on the extent of alloying and microstructural refinement. W-Cu-Pb powder reached steady state after further extended milling due to Pb addition, compared to the W-Cu system. The cryomilling at $-100^{\circ}C$ caused the more refinement of powder particle size, and enhanced the solubility of Cu or Pb in W, compared with milling at room temperature. In W-12.8wt%Cu-7.2%Pb powder cryomilled at $-100^{\circ}C$, the monotectic temperature of Cu-Pb as well as the melting temperature of Cu was decreased by refinement of Cu crystalline size, and the most amorphization was occurred after milling for 150 h.

  • PDF

원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화 (Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition)

  • 배차헌;정해용
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직 (Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis)

  • 허연지;이의선;오승탁;변종민
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가 (Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment)

  • 이기승;엄영성;김경태;김병기;유지훈
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.138-145
    • /
    • 2019
  • In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.