• Title/Summary/Keyword: $V/V_{cr}$

Search Result 1,049, Processing Time 0.033 seconds

Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating (복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성)

  • Park, Yong-Gwon;Park, Jung-Ung;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

Evaluation of 1Cr-1Mo-0.25V Steel Degradation Using Magnetic Barkhausen Noise (Magnetic Barkhausen Noise를 이용한 1Cr-1Mo-0.25V강의 열화도 평가)

  • Lee, J.M.;Ahn, B.Y.;Nam, Y.H.;Nahm, S.H.;Lee, S.S.;Lee, O.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.250-255
    • /
    • 2001
  • It is inevitable to evaluate the life of turbine rotor because the operating periods of power plants need to be extended. The magnetic methods utilizing Magnetic Barkhausen noise curve were applied to detect the degradation caused by thermal aging. The Magnetic property of material depends on the domain dynamics and it is affected by the microstructure of material. Therefore the magnetic property is very sensitive to the microstructure change of the material. It is, thus, very useful to detect the state of degradation of varying materials. The test specimen made of 1Cr-1Mo-0.25V steel was used widely for turbine rotor material, and seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. With the increase of degradation, BHN was decreased. The result was compared with coercive force and vickers hardness.

  • PDF

Dynamics Study with DFT(Density Functional Theory) Calculation for Metal with a few Peripheral Electrons (범밀도함수론을 이용한 백금, 팔라듐, 니켈, 크롬과 수소반응성 연구)

  • Kim, Taewan;Park, Taesung;Jung, Yeonsung;Kang, Youngjin;Lee, Taeckhong
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.234-239
    • /
    • 2014
  • To study catalytic activity and hydrogen embrittlement of Pd, Pt, Ni, and Cr in fuel cell electrode, we used density-functional theory. The calculation tools based electron density give much shorter calculation time and cheap costs. Maximum of bond overlap populations of each metal are 0.6539eV for Pd-H, 0.6711eV for Pt-H, 0.6323eV for Ni-H, 0.6152eV for Cr-H. Electron density of Cr has strongest in related metals, which shows strong localization of electron, implying anti hydrogen embrittlement behaviors.

Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity (고에너지용 저합금강 제동디스크의 마모 특성 평가)

  • Dong-gyu Lee;Kyung-il Kim;Gue-Serb Cho;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.532-537
    • /
    • 2024
  • In this study, wear characteristics and microstructure changes due to changes in alloy composition of Ni-Cr-Mo-V and Ni-Cr-Mo low-alloy steels used in brake discs for transportation system such as aircraft and high-speed trains. As a result of the hardness test, the hardness of C-Mo-V steel was the highest at 39.4±0.9HRc, and the hardness of Ni-Cr-Mo steel was the lowest at 32.4±0.6HRc. The friction coefficient tended to decrease as the vertical load increased. At a vertical load of 1 N, the friction coefficient of Ni-Cr-Mo steel was the highest at 0.842, and at a vertical load of 5 N, Mn-Cr-V steel was the highest at 0.696. Ni-Cr-Mo showed the largest wear scar width, depth, and wear amount, with a width of 711 ㎛, a depth of 8.24 ㎛, and a wear amount of 11 mg under a vertical load of 1 N, and a width of 1,017 ㎛, a depth of 19.17 ㎛, and a wear amount of 17 mg under a vertical load of 5 N. As a result of wear mechanism analysis, ploughing, delamination, and adhesion in all specimens, with plastic deformation being more prominently observed in Ni-Cr-Mo.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel (크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성)

  • Kim, Chung-Seok;Kwun, S.I.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.417-425
    • /
    • 2007
  • The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.