• Title/Summary/Keyword: $U_3O_8$

Search Result 507, Processing Time 0.028 seconds

Separation and Recovery of Uranium from Korean Monazite Sand by Ion-Exchange resin (이온교환수지에 의한 모나자이트중 우라늄의 분리, 회수에 관한 연구)

  • Young Gu Ha
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.361-367
    • /
    • 1983
  • The selective separation and the quantitative recovery of uranium from Korean monazite sand have been studied by anion-exchange chromatography. It has been shown that method of anion-exchange chromatography under controlled conditions of elution can be applied to the production of relatively high purity of Uranium Oxide from monazite sand. Under the optimum separation conditions, the recoveries from standard sample were up to 99.3% as $U_3O_8$ on sulfate form anion resin bed and 99.2% as $U_2O_3{\cdot}P_2O_7$ on phosphate form anion resin bed. The possibility of recovering uranium from the monazite sulfate solution using a strong base anion exchange resin-Amberlite IRA-900. Uranium was successfully recovered about 92 percent. Phosphate ion did not seem to interfere with the process.

  • PDF

Heat Transfer Characteristics of the U-shape Heat Pipe using Working Fluid of PFC (PFC 작동유체 사용 U형 히트파이프의 열전달특성 연구)

  • 이기우;박기호;전원표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.796-802
    • /
    • 2001
  • The purpose of the present study is to examine the heat transfer characteristics of the U-shape heat pipe for the cooling of semiconductor in subway train. Perflouro-carbon(PFC) was used as working fluid. Temperature distribution on the surface and heat transfer coefficients were investigated according to the working fluid volume percent and heating rate. The results were as follows; Optimum volumetric percent of working fluid was from 80% to 90%, and hat transfer coefficients of evaporation and condensation were as follows, respectively. $\hbar_ie=0.37\times(\frac{P_i}{P_O})$l_c}^0.3$,$\hbar_ic-4.2(\frac{\kappa_l^3p_l^2gh_fg}{\mu_lq_c_l_c}^\frac{1}{3}

  • PDF

Effects of Thermal Treatment Conditions on the Powder Characteristics of Uranium Oxide in HTGR Fuel Preparation (고온가스로용 핵연료 제조에서 열처리 조건이 우라늄산화물 입자 특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for $UO_2$ kernel preparation. In this study, ADU compound particles were calcined to $UO_3$ particles in air and Ar atmospheres, and these $UO_3$ particles were reduced and sintered in 4%-$H_2$/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to $UO_3$ phases at $500^{\circ}C$. At $600^{\circ}C$, the $U_3O_8$ phase appeared together with $UO_3$. After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric $UO_2$. As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of $U_3O_7$ and $U_4O_9$.

Preparation of 2,9-Dimethyl-6H,13H-dibenzo[d,i][1,6]dithiecin-7,14dlone by Sodium Azide-Promoted Cyclodimeri-zation of o-Acylthiophenacyl Chloride

  • Yu, Seong U;Kim, Min Gyeong;Lee, Gi Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.797-800
    • /
    • 2000
  • The reaction of o-acylthiophenacyl chloride 5a with onc equivalent ofsodium azide in aqueous acetone at-10~ $-5^{\circ}C$ gave 2,9-dimethyl-6H,I3H-dibenzo[d,i][1,6]dithiecin-7,14-dione 7(10%),acyclic dimer 8(64%),and tri-mer 9 (8%). Dimer 8 and trimer 9 we re converted readily to 7 under the similar conditions at room temperature in yields of 72% and 53%,respectivel. Also, one pot synthesis of 7 (64%, 45%) from the reaction of 5a or 5b with two equivalents of sodium azide at room temperature was very successful.