• Title/Summary/Keyword: $UV/TiO_2$ System

Search Result 132, Processing Time 0.028 seconds

The properties of $TiO_2$ thin films by oxygen partial pressure (산소 분압비에 따른 $TiO_2$ 박막의 특성평가)

  • Yang, Hyun-Hun;Lim, Jeong-Myung;Park, oung-Yun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.154-157
    • /
    • 2003
  • $TiO_2$ thin films were fabricated by RF magnetron sputtering system at by controlling deposition times, ratios of $Ar:O_2$ partial presser ratio and substrate conditions. And the surface, cross-section morphology, microstructure, and composition ratio of the films were analyzed by FE-SEM, TEM and XPS. Besides, the optical absorption and transmittance of the $TiO_2$ films were measured by a UV-VIS-NIR Spectrophotometer, and photocatalytic properties were studied by G${\cdot}$C Analyzer & Data Analysis system. As the result, when $TiO_2$ thin film was made at deposition time of 120[min] and $Ar:O_2$ ratio of 60:40, the best structural and optical properties among many thin films could be accepted. The best results of properties were as follows: thickness; 360~370[nm), grain size; 40[nm], gap between two peak binding energy; $5.8{\pm}0.05[eV]$ ($2_{p3/2}$ peak and $2_{p1/2}$ peak of Ti was show at $458.3{\pm}0.05[eV]$ and $464.1{\pm}0.05[eV]$ respectively), binding energy; $530{\pm}0.05[eV]$, optical energy band gap; 3.4[eV].

  • PDF

Degradation of Formaldehyde in Indoor Air Quality by $TiO_2$ Sol Coated Wall Paper ($TiO_2$ 광촉매 졸(Sol)의 벽지코팅에 의한 실내공기질에서의 포름알데히드 분해)

  • An, Sang-Woo;Cho, Il-Hyoung;Park, Jae-Hong;Chang, Soon-Woong;Kim, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.872-877
    • /
    • 2006
  • It has been concerned about the indoor air contaminants because of the hours spend in indoor space. These contaminants are emitted from various indoor facilities. Therefore, even though there concentrations are very low, adverse effects can't be ignored. However, treatment technologies are insufficient to deal with these contaminants. For this reason, the objective of this study was to investigate the feasibility of artificial ultraviolet(UV) detoxification using $TiO_2$ system for degrading formaldehyde contaminated indoor air. The experiment was also performed to investigate the formaldehyde removal effect of fluorescence lamp as an alternative UV light source because it is used in indoor as a light source. The results presented demonstrated that as the $TiO_2$ dosage is more and the reaction area is wider, the photocatalytic degradation rate does more enhanced. Degradation of TCE was more rapid used in $UV_{254}$ lamp than in fluorescence lamp. However, if it is operated during enough time, it will be able to remove the considerable quantity of TCE in case of using fluorescence lamp.

Organic Solvent Exposure of Thinner-Using Occupation and Its Treatment by Means of $TiO_2$ Photocatalyst (신너사용 작업장의 유기용제 노출 및 $TiO_2$ 광촉매를 이용한 BTX처리에 관한 연구)

  • 양원호;김현용;손부순;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.26-33
    • /
    • 2002
  • Ultimate objective of industrial hygiene is the prevention of health impairment that may result from exposure to chemicals at workplace. Workers in solvent thinner-using occupation environment may be highly exposed to VOCs (volatile organic compounds) because solvent thinner has been used extensively such as painting, spraying, degreasing, coating and so on in Korea. The purpose of this study was to recognize, evaluate, and propose the control methods of VOCs from solvent thinner-using workplace. Five target volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) were monitored in H company of Shiwa Industrial Complex and analyzed in perosnal, occupational indoor and outdoor during working hours simultaneously. Engineering control such as local ventilation should be made in considering the long-term exposure, though measured VOCs concentration did not exceed the workplace exposure standards. In addition, air cleaning device should be installed in local ventilation because Shiwa Industrial Complex has had the serious ambient air pollution. Currently, environmental purification using $TiO_2$ photocatalyst have attracted a great deal of attention with increasing number of recent environmental problems. In this study, $TiO_2$ sol coated on the ceramic bead was prepared by sol-gel method and the photodegradation of target compounds was investigated in gas phase by the exposure to UV-A lamp(365nm) in a batch system.

In-situ Calibration of the Hydroperoxyl Radical Using an Immobilized TiO2 Photocatalyst in the Atmosphere

  • Kwon, Bum-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.785-789
    • /
    • 2008
  • The present study is the first report of utilizing $TiO_2$ photocatalyst to analytically calibrate the hydroperoxyl radical ($HO_2\;^{\cdot}$). An in-situ calibration method of $HO_2\;^{\cdot}$ is proposed for air monitoring by using an 2-methyl-6-(pmethoxyphenyl)- 3,7-dihydroimidazo-[1,2-a]pyrazin-3-one (MCLA)-chemiluminescence (CL) technique. In this method, $HO_2\;^{\cdot}$($pK_a$ = 4.80) is produced by the ultraviolet (UV) photolysis of immobilized $TiO_2$ using a constant flow rate of air equilibrated water, in which $HO_2\;^{\cdot}$ is controlled by using various lengths of knotted tubing reactor (KTR). The principle of the proposed calibration is based on the experimentally determined halflife ($t_{1/2}$) of $HO_2\;^{\cdot}$ and its empirically observed pH-dependent rate constant, $k_{obs}$, at a given pH. The concentration of $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− is increased as pH increases. This pH dependence is due to the different disproportionative reactivities between $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− and $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$−. Experimental results indicate the practical feasibility of the approach, producing very promising method.

Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal (광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거)

  • 추광호;박경원;김문현
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2004
  • This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.

Photocatalytic activity of $TiO_2$ on nano-diamond powder prepared by Atomic Layer Deposition

  • Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Nam, Jong-Won;Sim, Chae-Won;Jeong, Myung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.425-425
    • /
    • 2011
  • The photocatalytic decomposition of toluene gas was investigated with $TiO_2$ on nano-diamond powder (NDP) under UV irradiation. Atomic layer deposition (ALD) was used for the growth of $TiO_2$ on the NDP. The structure and surface properties of catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The photocatalytic activity for the toluene decomposition was evaluated by measuring the concentration change of toluene and $CO_2$ gas with gas chromatography (GC)-flame ionization detector (FID) system. The photocatalytic activities of $TiO_2$/NDP catalysts were compared with that of P-25. The rate of initial photocatalytic decomposition of toluene for the $TiO_2$/NDP catalysts was relatively lower when compared to P-25. The photocatalytic activity of P-25 was rapidly decreased with time, whereas, the deactivation of $TiO_2$/NDP catalysts was less pronounced. Therefore, as the reaction time increased, the photocatalytic activity of $TiO_2$/NDP catalysts became higher than that of P-25. The intermediates such as benzaldehyde or benzoic acid, etc were more easily adhered to the active site on the P-25 surface during reaction, resulting in easier deactivation of P-25. These results could be confirmed using FT-IR spectroscopy. We suggest that the NDP used as substrate can reduce the deactivation of $TiO_2$ on the surface.

  • PDF

Detection of Vibrio vulnificus in Fish Farm and Bactericidal Methods on this Bacteria (가두리 양식장의 Vibrio vulnificus 검출 및 제어 방법)

  • 성치남;송계민;이규호;양성렬
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • Detection of Vibrio vulnificus in fish farm and searching for the bactericidal methods on this bacteria were studied. To detect this microorganism in sea water, mud, fish and mussels, selective isolation methods and detection of vvhA gene were used from January to October,2000. V. vulnificus was detected from May when the water temperature was over $17^{\circ}C$. From June to September, higher than $19^{\circ}C$, this bacteria could be isolated from most of the samples. Freezing and refrigerating did not inhibit the growth of V. vulnificus. Citric acid did not show the bactericidal effect, but more than 500 mg/l of EDTA did. With the aid of UV and photocatalyst, $TiO_{2}$ showed bactericidal effect after 15 minute treatment. Photocatalytic system consisted of glass bead coated with $TiO_{2}$ and UV illumination showed bactericidal effect on V. vulnificus at the turnover rate of 0.2/min.

Comparison of TiO2 and ZnO catalysts for heterogenous photocatalytic removal of vancomycin B

  • Lofrano, Giusy;Ozkal, Can Burak;Carotenuto, Maurizio;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.213-223
    • /
    • 2018
  • Continuous input into the aquatic ecosystem and persistent structures have created concern of antibiotics, primarily due to the potential for the development of antimicrobial resistance. Degradation kinetics and mineralization of vancomycin B (VAN-B) by photocatalysis using $TiO_2$ and ZnO nanoparticles was monitored at natural pH conditions. Photocatalysis (PC) efficiency was followed by means of UV absorbance, total organic carbon (TOC), and HPLC results to better monitor degradation of VAN-B itself. Experiments were run for two initial VAN-B concentrations ($20-50mgL^{-1}$) and using two catalysts $TiO_2$ and ZnO at different concentrations (0.1 and $0.5gL^{-1}$) in a multi-lamp batch reactor system (200 mL water volume). Furthermore, a set of toxicity tests with Daphnia magna was performed to evaluate the potential toxicity of oxidation by-products of VAN-B. Formation of intermediates such as chlorides and nitrates were monitored. A rapid VAN-B degradation was observed in ZnO-PC system (85% to 70% at 10 min), while total mineralization was observed to be relatively slower than $TiO_2-PC$ system (59% to 73% at 90 min). Treatment efficiency and mechanism of degradation directly affected the rate of transformation and by-products formation that gave rise to toxicity in the treated samples.

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae;Kim, Mo-Keun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1195-1201
    • /
    • 2008
  • Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.