• Title/Summary/Keyword: $UO_{2}$ Pellet

Search Result 117, Processing Time 0.021 seconds

Design of Spent Fuel Rod Slitting Device of an Actual Proof (실증용 사용후핵연료봉 Slitting 장치 설계)

  • Jung J. H.;Yoon J. S.;Hong D. H.;Kim Y. H.;Jin J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.109-113
    • /
    • 2004
  • Slitting device is equipment to separate spent fuel of 250 mm rod cut pellets and hull in order to supply required $UO_2$ pellets through the dry pulverizing/mixing device. For development of its device, We have analyzed slitting programs so that the existing device is modified an appropriate scale in the advanced spent fuel conditioning process. The results of the analysis, we added the automatic separation function of pellets and hull, After slitting. Also, we have concentrated on reducing the operation time so that the support and the body of a slitting blade could have been established in the single structure to be easily maintained. It is based on a design and manufacture of a testing device and we have performed an efficiency evaluation. We have analyzed the results of efficiency tests of the slitting device and get the specification of the slitting device. we complete the basic design of the slitting device by using of these data. Therefore, We apply to a basic data when manufacturing a slitting device.

  • PDF

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.

High Temperature Oxidation Behavior of Nd-doped $UO_2$ (네오듐 고용 이산화우라늄의 고온 산화거동)

  • Lee, Jae-Won;Kang, Sang-Jun;Kim, Young-Hwan;Cho, Kwang-Hun;Park, Guen-IL;Lee, Jung-Won
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-230
    • /
    • 2013
  • The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

Uranium Enrichment Comparison of UO2 Pellet with Alpha Spectrometry and TIMS

  • Song, Ji-Yeon;Seo, Hana;Kim, Sung-Hwan;Choi, Jung-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.120-123
    • /
    • 2018
  • Background: Analysis of enrichment of $UO_2$ is important to verify the information declared by the license-holders. The redundancy methods are required to guarantee the analysis result. Korea Institute of Nuclear Nonproliferation and Control (KINAC) used to analyze it with alpha spectrometry and consign to Korea Basic Science Institute (KBSI) Thermal Ionization Mass Spectrometry (TIMS). This article evaluated the similarity of the results with two methods and derive correlation equation. It could be compared to the results measured by TIMS running by KBSI. Materials and Methods: There are not many certified materials for the uranium enrichment value. Therefore, 34 uranium pellets, which have the wide range of uranium enrichment from 0.21 to 4.69 wt%, were used for the experiments by the alpha spectrometry and the TIMS. Results and Discussion: The study shows there are the tendency of analyzed enrichment by each equipment. It shows uranium enrichment with alpha spectrometry evaluated 17% higher than that with TIMS on average. The regression equations were also derived in case the similarity between the two results with two methods is lower than predicted. Two experiments were designed to compare the effect of number of samples. The $R^2$ was 0.9977 with 34 pellets. It shows the equation is appropriate to predict the enrichment values by TIMS with that of alpha spectrometry. The $R^2$ was 0.9858 with four pellets for ten times. The $R^2$ decreased while the number of samples increased. The discrepancy between the lowest and highest enrichment seems to be one of the reason for it. Conclusion: KINAC expects the first equation with 34 samples is useful to predict the result with TIMS, the redundancy method, based on the alpha spectrometry. The extra samples are necessary to collect if the enrichment value analyzed by TIMS is lower than the value predicted with the equation. Further study would be followed related to the impact of the peak counts for each uranium isotopes, sample amount and number of experiments when TIMS established in KINAC by the end of 2018.

Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer (분광기를 이용한 우라늄산화물(UOX) 소결체의 밀도 분석)

  • Lee, Byung Kuk;Yang, Seung Chul;Kwak, Dong Yong;Cho, Hyun Kwang;Lee, Jun Ho;Bae, Young Moon;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2017
  • The sintered density of uranium oxide pellets for pressurized water reactors is generally analyzed with pellet's samples completed with the sintering process. In this paper, the sintered density was analyzed by the newly developed method measuring the chromatography of ammonium diuranate, a precursor of uranium oxide, by a spectrophotometer (CM-5, Konica Minolta) before completing the sintering process. As a result of the sintered density analysis based on the brightness, color coordinate values (L, a, b) obtained from five ammonium diuranate samples by a spectrophotometer and the trend line of sintered density analyzed by a previous method, the sintered density with respect to the L value was observed with 0.9967 of the decision factor $R^2$. In case of a value, $R^2$ value was 0.9534 indicating lower reliability than that of the L value. However, b value with $R^2$ value of 0.4349 showed a very low correlation.

Separation and Recovery of Iodide in Radioactive Waste for $^129I$ (방사성폐기물 중의 $^129I$ 정량을 위한 요오드의 분리 및 회수)

  • 최계천;한선호;지광용;임석남;박상규
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.632-635
    • /
    • 2003
  • For the disposal of low-level radwaste from nuclear power plant need the determination of levels of radio nuclides in radwaste. These nuclides include the difficult-to-measure nuclides, so indirect methodology for the determination of the difficult-to-measure nuclides have to be developed. In this work, for the determination of $^129I(t_{1/2}=1.57{\times}10^7 years)$ in low-level radwaste from nuclear power plant is investigated. Recovery of Iodide in simulated waste($UO_2$ pellet) as a soluble and radwaste(resin, woolen fabric)as a insoluble samples are measured. After pretreatment of sample, $I_2$ are extracted from aqueous solution with $CCl_4$. Then I are extracted from $CCl_4$ with 0.1M $NaHSO_3$ aqueous solution. iodide in aqueous solution are determined by ion chromatography. The overall recovery yield is 76.7 (RSD 1.7%) for mixed-acid digestion method. Incase of woolen fabrics, overall recovery yield is 74.3 (RSD 2.2%) and recovery of iodide in resin 56.5(RSD 5.6%) for alkaline fusion method.

  • PDF