• Title/Summary/Keyword: $TiO_2$thin film

Search Result 1,089, Processing Time 0.029 seconds

Thermal Stability of Ti-Si-N as a Diffusion Barrier (Cu와 Si간의 확산방지막으로서의 Ti-Si-N에 관한 연구)

  • O, Jun-Hwan;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2001
  • Amorphous Ti-Si-N films of approximately 200 and 650 thickness were reactively sputtered on Si wafers using a dc magnetron sputtering system at various $N_2$/Ar flow ratios. Their barrier properties between Cu (750 ) and Si were investigated by using sheet resistance measurements, XRD, SEM, RBS, and AES depth profiling focused on the effect of the nitrogen content in Ti-Si-N thin film on the Ti-Si-N barrier properties. As the nitrogen content increases, first the failure temperature tends to increase up to 46 % and then decrease. Barrier failure seems to occur by the diffusion of Cu into the Si substrate to form Cu$_3$Si, since no other X- ray diffraction intensity peak (for example, that for titanium silicide) than Cu and Cu$_3$Si Peaks appears up to 80$0^{\circ}C$. The optimal composition of Ti-Si-N in this study is $Ti_{29}$Si$_{25}$N$_{46}$. The failure temperatures of the $Ti_{29}$Si$_{25}$N$_{465}$ barrier layers 200 and 650 thick are 650 and $700^{\circ}C$, respectively.ely.

  • PDF

Ferroelectric $SrBi_2Ta_2O_9$ Thin Films by Liquid-Delivery Metalorganic Chemical Vapor Deposition using $Sr[Ta(OEt)_5(dmae)]_2$ and $Bi(C_6H_5)_3$

  • Shin, Wonng-Chul;Choi, Kyu-Jeong;Park, Chong-Man;Yoon, Soon-Gil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.219-223
    • /
    • 2000
  • The ferroelectric SBT films were deposited on Pt/Ti/SiO$_2$/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)$_5$(dmae)]$_2$and Bi(C$_6$ 6/H$_5$)$_3$. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 40$0^{\circ}C$, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0, respectively. As-deposited film was amorphous. However, after annealing at 75$0^{\circ}C$ for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 75$0^{\circ}C$ were 4.7$\mu$C/$\textrm{cm}^2$ and 115.7kV/cm at an applied voltage of 5V, respectively. The SBT films annealed at 75$0^{\circ}C$ showed practically no polarization fatigue up to 10$^10$ switching cycles.

  • PDF

Process Characteristics for $YB_{2}Cu_{3}O_{7-d}$ Films Fabricated by Single Target Sputter and Surface Modification Technique

  • Lee, Eue-Jae
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.598-605
    • /
    • 1995
  • Thin films of $YB_{2}Cu_{3}O_{7-d}$ were prepared on various substrated of MgO(100), $SrTiO_{3}$, and $LaAlO_{3}$ by using off-axis magentron sputtering methods and annealing in-situ. The prarameters of film fabrication processes had been optimized through a "follow the lcoal maxima" strategy to yield good quality films in therms of the critical temperature $T_{c}$ and the critical current density $J_{c}$. Optimizedproecsses employing a plane magndtron and an cylindrical magnetron yielded $T_{c}$>90K along with $J_{c}$$10^{6}$A/$\textrm{cm}^2$ at 77K and > 2${\times}$$10^{7}$A/$\textrm{cm}^2$ at 5K. The sampels, however, showed degradationinthe properties, after chemical etching for fabrication of microbridges with the line width of 2-10 mocrons. In particular, the value of $T_{c}$ for the microbridges of 2microns was as small as 80%. The degradation was strongly dependent on the line width through a formula : $T_{c}$(e)=$T_{c}$)b) [1-a exp(-1000 bL)} where $T_{c}$(e) and $T_{c}$ (b) are the values of $T_{c}$ in the absolute scale measured after and before chemical etching, respectively and L is the line width in mm. By utilizing a best fitting technique, the proper constant values of a and to b were found as exp(-1.2) and 0.22, respectively. This formula was very useful in estimatiing the upper limit of the device operationtemperature.

  • PDF

Characteristics of the ( Pb, La ) $TiO_3$ Thin Films with Pb/La Compositions (Pb/La 조성에 따른 ( Pb, La ) $TiO_3$ 박막의 특성 변화)

  • Kang, Seong-Jun;Joung, Yang-Hee;Yoon, Yung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In this study, we have prepared PLT thin films having various La concentrations by using sol-gel method and studied on the effect of La concentration on the electrical properties of PLT thin films. As the La concentration increases from 5mol% to 28mol%, the dielectric constant at 10kHz increases from 428 to 761, while the loss tangent decreases from 0.063 to 0.024. Also, the leakage current density at 150kV/cm has a tendency to decrease from 6.96${\mu}A/cm^2$ to 0.79${\mu}A/cm^2$. In the result of hysteresis loops of PLT thin films, the remanent polariation and the coercive field decrease from 9.55${\mu}C/cm^2$ to 1.10${\mu}C/cm^2$ and from 46.4kV/cm to 13.7kV/cm, respectively. With the result of the fatigue test on the PLT thin films, we have found that the fatigue properties are improved remarkably as the La concentration increases from 5 mol% to 28mol%. In particular, the PLT28) has paraelectric phase and its charge storage clensity and leakage current density at 5V are 134fC/${\mu}cm^2$ and 1.01${\mu}A/cm^2$, respectively. The remanent polarization and coercive field of the PLT(10) film are 6.96${\mu}C/cm^2$ and 40.2kV/cm, respectively. After applying of $10^9$ square pulses with ${\pm}5V$, the remanent polarilzation of the PLT(10) film decreases about 20% from the initial state. In the results, we conclude that the 10mol% and the 28mol% La doped PLT thin films are very suitable for the capacitor dielectrics of new generation of DRAM and NVFRAM respecitively.

  • PDF

Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification (표면개질에 의한 헤테로에피텍시 단결정 다이아몬드의 결정성 향상)

  • Bae, Mun Ki;Kim, Min Su;Kim, Seong Woo;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.124-128
    • /
    • 2020
  • Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.

Effect of annealing temperature on the structural and electrical properties of titanium nitride film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Kim, Chang-Soo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.36-37
    • /
    • 2006
  • Titanium oxy-nitride ($TiN_O_y$) thin films were deposited on $SiO_2$/Si substrates using reactive dc magnetron sputtering, and were then annealed at various temperatures in air ambient to incorporate oxygen into the films. The effect of annealing temperature on the structural and electrical properties of the films was investigated. The grain size of the films decreases with increasing annealing temperature. On the other hand, crystallinity of the films is independent of annealing temperature in air ambient. Resistivity of the films increases remarkably as an annealing temperature increases and temperature coefficience of resistance (TCR) of the films varies from a positive value to a negative value. The films annealed at $350^{\circ}C$ for 30 min exhibited a near-zero TCR value of approximately -5 ppm/K. The decrease of the grain size with increasing annealing temperature was attributed to an increase of oxygen concentration incorporated into the films during anncaling treatment.

  • PDF

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

Study on Etch Characteristics of BTO Thin Film by using $Cl_2$/Ar Inductively Coupled Plasma ($Cl_2$/Ar ICP 플라즈마를 이용한 BTO박막의 식각 특성 연구)

  • Kim, Man-Su;Min, Nam-Ki;Lee, Hyun-Woo;Choi, Bok-Gil;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.177-178
    • /
    • 2007
  • 본 연구에서는 MIM (Metal-Insulator-Metal) capacitor의 유전 물질로 사용되는 $Ba_xTi_yO_z$(BTO) 박막의 식각 특성을 고찰하였다. $Cl_2$/Ar 혼합가스를 이용하여 Inductively Coupled Plasma(ICP)에서 BTO 박막을 식각하였고, 식각된 BTO박막의 표면을 X-ray photoelectron spectroscopy(XPS) 분석하였다. BTO박막의 식각 속도는 Ar이 80%인 식각 조건에서 31.7nm/min의 식각 속도를 추출하였고, 동시에 Pt박막에 대한 높은 선택비를 얻었다. X-ray photoelectron spectroscopy (XPS) 분석 결과로부터 표면 반응을 조사하여, 식각 기구를 고찰하였다.

  • PDF

Excitation Light Source Dependence of Photo-catalytic Efficiency for Benzene Removal (벤젠제거에 대한 광촉매 효율의 여기광원 의존성)

  • Choi, Yong-Seok;Kim, Seong-Jin;Han, Young-Heon;Yu, Soon-Jae;Lee, Eun-Ah;Kim, Hak-Soo;Kim, Song-Gang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.510-514
    • /
    • 2005
  • We have investigated the excitation-light source dependence of photo-catalytic efficiency for the benzene removal. The photo-catalytic module for the benzene removal is fabricated by a combination of GaN-based ultraviolet light-emitting diode (UV GaN-LED) and $TiO_2$ thin film coated on an aluminum plate. The benzene reduction rates of 365 nm and 375 nm modules at 60 mA junction current are approximately $8.95\;\%/Hr$ and $9.2\;\%/Hr$, respectively, which indicates that 365 nm GaN-LED is more effective than 375 nm GaN-LED. The benzene reduction efficiency is also noticeably dependent on the excitation wavelength and excitation-light power, as well as it is increased with the shorter wavelength and higher excitation power. This result exhibits that UV GaN-LED is useful to remove the volatile organic compounds (VOCs) existing in the environment.