Ferroelectric $SrBi_2Ta_2O_9$ Thin Films by Liquid-Delivery Metalorganic Chemical Vapor Deposition using $Sr[Ta(OEt)_5(dmae)]_2$ and $Bi(C_6H_5)_3$

  • Shin, Wonng-Chul (Department of Materials Engineering, Chungnam National University, Daeduk Science Town) ;
  • Choi, Kyu-Jeong (Department of Materials Engineering, Chungnam National University, Daeduk Science Town) ;
  • Park, Chong-Man (Department of Materials Engineering, Chungnam National University, Daeduk Science Town) ;
  • Yoon, Soon-Gil (Department of Materials Engineering, Chungnam National University, Daeduk Science Town)
  • Published : 2000.09.01

Abstract

The ferroelectric SBT films were deposited on Pt/Ti/SiO$_2$/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)$_5$(dmae)]$_2$and Bi(C$_6$ 6/H$_5$)$_3$. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 40$0^{\circ}C$, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0, respectively. As-deposited film was amorphous. However, after annealing at 75$0^{\circ}C$ for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 75$0^{\circ}C$ were 4.7$\mu$C/$\textrm{cm}^2$ and 115.7kV/cm at an applied voltage of 5V, respectively. The SBT films annealed at 75$0^{\circ}C$ showed practically no polarization fatigue up to 10$^10$ switching cycles.

Keywords

References

  1. International Patent Publication v.WO 93 C.A.Paz de Araujo,L.D.,McMillan,J.D.Cuchiaro;M.C.Scott
  2. M.C.Scott;Huffman,Mater.Res.Bull v.20 no.33 J.F.Scott,F.M.Ross,C.A.Paz de Araujo
  3. Appl.Phys.Lett v.66 K.Amanuma,T.Hase;Y.Miyasaka,
  4. Paper Presented at 7th International Symposium on Intergrated Ferroelectrics held in Colorado Springs,CO v.20 no.22 M.Klee,
  5. Appl,Phys.Lett v.67 R.Dat,J.K.Lee,O.Auciello;A.I.Kingon,
  6. J.Electrochem,Soc v.144 S.S.Park,C.H.Yang,J.H.Ahn,H.G.Kim;S.G.Yoon
  7. Integrated Ferroelectrics v.15 J.K.Lee.T.K.Song;H.J.Jung,
  8. Phys,Lett v.68 T.Li,Y.Zhu,S.B.Desu,C.H.Peng;M.Nagata,Appl
  9. Jpn.J.Appl.Phys v.35 P.C.Van Buskirk,S.M.Bilodeau,J.F.Roeder;P.S.Kirlin
  10. J.Mater.Res v.12 Y.Zhu,S.B.Desu,T.Li,S.Ramanathan;M.Nagata,
  11. Intergrated Ferroelectrics v.14 C.Isobe,T.Ami,K.Hironaka,K.Watanabe,M.Sugiyama,N.nagel,K.Katori,Y.Ikeda,C.D.Gutleben,M.Tanaka,H.Yamoto;H.Yagi,
  12. Mazure,Mater.RES.Soc.Symp.proc v.493 B.C.Hendrix,F.Hintermaier,D.A.Desrochers,J.F.Roeder,G.Bhandari,M.Chappuis,T.H.Baum,P.C.Van Buskirk,C.Dehm,E,.Fritsch,N.Nagel,W.honlein;C,.
  13. Intergrat.Ferroelectr v.18 Y.Kojima,H.Kadokura,Y.Okuhara,M.Matsumoto;T.Mogi,
  14. Jpn.J.Appl,Phys v.38 T.Jimbo,H.Sano,Y.Takahashi,H.Funakubo,E.Tokumitsu;H,Ishiwara
  15. Deposition v.5 M.J.Crosbie,P.J.Wright,H.O.Davies,A.C.Jones,T.J.Leedham,P.Obrien;G.W.Crichlow,Chem.Vap