• Title/Summary/Keyword: $TiO_2$ sol

Search Result 802, Processing Time 0.026 seconds

Analyses on Viscosity Properties of $TiO_2$ Sol and $SiO_2$ Sol using Sol-Gel Method (솔젤법에 의해 제작된 $TiO_2$ 솔과 $SiO_2$ 솔의 점도 특성에 대한 분석)

  • You Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.573-577
    • /
    • 2005
  • [$TiO_2$] sol and $SiO_2$ sol were prepared using sol-gel method. As $H_{2}O$/Alkoxide ratios increased, sol had cluster structure and as $H_{2}O$/Alkoxide ratios decreased, sol had linear structure. Gelation time of $TiO_2$ sol was faster than that of $SiO_2$ sol according to the time. In comparison with initial viscosity between $TiO_2$ sol and $SiO_2$ sol, $TiO_2$ sol was highest at $H_{2}O/Ti(OC_{3}H_{7})_{4}=5$, $SiO_2$ sol was almost constant according to $H_{2}O/Si(OC_{2}H_{5})_{4}$ ratios.

Synthesis of stabilized $TiO_2$ sol by sillane treatment (실란처리를 통한 안정화된 $TiO_2$졸의 합성)

  • Han, Dong-Hee;Kang, Dong-Jun;Kim, Rak-Hee;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.234-235
    • /
    • 2007
  • Transparent nanosized $TiO_2$ sol has been made by sol-gel method, using Titanium(IV) isopropoxide precursor. To promote hydrolysis for titania is needed excess water, Oil bath and temperature about $80^{\circ}C$. $TiO_2$ sol is peptized ranging from pH 1 to 1.5 using hydrochloric acid for the stability of sol during a condensation reaction. The average particle size of $TiO_2$ sol was approximately 20nm. $TiO_2$-sillane sol was synthesized by surface treatment using MTMS to the $TiO_2$ sol. TEM analysis has been used to check the degree of dispersion and FT-IR analysis has been used to see if the sillane has been chemically bonded on the surface of $TiO_2$.

  • PDF

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti (Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구)

  • Kim, Yun-Jong;Kim, Taik-Nam;Lee, Sung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

Characteristics of $TiO_2-$SnO_2$ Thin Films Fabricated Using Sol-Gel Method (솔-젤법에 의해 제작된 $TiO_2-$SnO_2$ 박막의 특성)

  • You, Do-Hyun;Yuk, Jae-Ho;Lim, Kyung-Bum
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.511-516
    • /
    • 2002
  • $TiO_2-SnO_2$ thin films are fabricated using sol-gel method. In case the amount of water required hydrolysis smaller than that for stoichiometry, Ti sol forms clear sol which has normal chain structure. On the contrary, in case the amount of water required hydrolysis larger than that for stoichiometry, Ti sol forms suspended sol which has cluster structure. The thickness of thin films increase about $0.03{\sim}0.04{\mu}m$ every a dipping. The permittivity and dissipation factor of $TiO_2-SnO_2$ thin films decrease with increasing frequency. Thin films show semiconductive characteristics above $400^{\cric}C$.

Effects on Properties of $V_2O_5$-added $TiO_2$ Ceramics ($V_2O_5$ 첨가가 $TiO_2$ 세라믹스의 물성에 미치는 효과)

  • You, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.138-140
    • /
    • 2007
  • $TiO_2-V_2O_5$ sol was fabricated using sol-gel method and $TiO_2-V_2O_5$ thin films were fabricated using dip-coating method. $V_2O_5$ sol was added 0.01mo1e, 0.03mo1e, 0.05mo1e into $TiO_2$ sol. Viscosity of sol increased fast from about 1,000 minutes and sol began gelation from about 10,000 minutes. As a results of crystalline properties, $V_2O_5$ peaks were not found despite of $V_2O_5$ addition. Endothermic reaction occurred due to evaporation of solvent and dissociation of OH at $80^{\circ}C$. Exothermic reaction occurred due to combustion and oxidation of solvent at $230^{\circ}C$, occurred to combustion and oxidation of alkyl group at $350^{\circ}C$. Thickness of thin films increased $0.1{\sim}0.25{\mu}m$ every a dipping.

  • PDF

Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle

  • Maniruzzaman, Mohammad;Zhai, Lindong;Mun, Seongcheol;Kim, Jaehwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2343-2347
    • /
    • 2015
  • This paper reports the effect of Titanium dioxide (TiO2) nanoparticles on a TiO2 sol-gel Schottky diode. TiO2 nanoparticles were blended with TiO2 sol-gel to fabricate the Schottky diode. TiO2 nanoparticles showed strong anatase and rutile X-ray diffraction peaks. However, the mixture of TiO2 sol-gel and TiO2 nanoparticles exhibited no anatase and rutile peaks. The forward current of the Schottky diode drastically increased as the concentration of TiO2 nanoparticles increased up to 10 wt. % and decreased after that. The possible conduction mechanism is more likely space charge limited conduction.

Characterization of ZnO/TiO2 Nanocomposites Prepared via the Sol-Gel Method

  • Hellen, Nalumaga;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.140-144
    • /
    • 2018
  • $ZnO/TiO_2$ nanocomposites were synthesized via a modified sol-gel technique by incorporating 30 and 70 wt% $TiO_2$ nanopowder into a ZnO sol-gel matrix. Zinc acetate dihydrate was used as the ZnO precursor and de-ionized water as the solvent, while titanium oxysulfate was employed for the synthesis of $TiO_2$ nanopowder. The synthesized $ZnO/TiO_2$ nanocomposites were characterized by x-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. The $ZnO/TiO_2$ nanocomposites showed both the ZnO (wurtzite) and $TiO_2$ (anatase) phases. The average ZnO crystallite size of the $ZnO/TiO_2$ nanocomposites was found to be about 26.3 nm. The TEM results confirmed that spherical $TiO_2$ particles were embedded in the ZnO matrix. $TiO_2$ particles attached onto the rod-like ZnO particles were also observed. The $ZnO/TiO_2$ nanocomposites exhibited optical absorption properties superior to those of pure ZnO and $TiO_2$.

A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wires and brackets (교정용 와이어 및 브라켓에 이산화티탄 광촉매 코팅 시 코팅방법에 따른 비교연구)

  • Koh, Eun-Hee;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.451-464
    • /
    • 2006
  • The purpose of this study was to search for an appropriate method of coating $TiO_2$ on orthodontic appliances. $TiO_2$ thin films were deposited on orthodontic wires and brackets using sol-gel, CVD (Chemical Vapor Deposition) and PE-CVD (Plasma Enhanced-CVD) methods. The roughness of $TiO_2$-coated surfaces was investigated via scanning electron microscope (SEM) and adhesive strength of $TiO_2$ thin films was measured by adhesive tape pull test. Methylene blue degradation test was carried out to evaluate the photocatalytic activity of $TiO_2$ and the corrosion resistance of $TiO_2$ thin films against fluoride solution was also analyzed by observing the surfaces of $TiO_2$-coated wires and brackets via SEM after immersion in sodium fluoride solution. Through the comparison of properties and photocatalytic activity of $TiO_2$ thin films according to the coating methods, the following results were obtained. Smoother surfaces of $TiO_2$ thin films were generated by CVD or PE-CVD methods than through the sol-gel method or the control. Adhesive strength of the $TiO_2$ thin films was highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Photocatalytic activity of $TiO_2$ thin films on methylene blue was the highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Corrosion resistance of $TiO_2$ thin films against fluoride solution was stronger in CVD and PE-CVD methods than in the sol-gel method. The results of this study suggest that the CVD or PE-CVD methods is more appropriate than the sol-gel method for $TiO_2$ coating on orthodontic wires and brackets.

Electrochemical Characteristics of TiO2 Photoelectrode for DSSC Prepared by Sol-gel Method (졸겔법에 의한 DSSC 광전극의 전기화학적 특성)

  • Park, A-Reum;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.315-320
    • /
    • 2012
  • In general, a photoelectrode in DSSC(dye sensitized solar cell) are fabricated by using the $TiO_2$ (Titanium dioxide) to realize high efficiency and the efficiency of DSSC is affected by the size, the shape and the property of $TiO_2$. We synthesized the crystalline $TiO_2$ by sol-gel method. In spite of many merits, only weakness for the sol-gel method is taking many process times. To solve this problem, we reduced the fabricating processes. The reduced process is the making process that is $TiO_2$ sol to $TiO_2$ powder with including of two heat treatment and two mixing. We could simplify the process by preparing $TiO_2$ sol to $TiO_2$ paste directly. As a result, DSSC fabrication process is simplified and we have obtained the efficiency best result 3.88% with $V_{OC}$=0.71 V, $J_{SC}=8.70\;mA/cm^{-2}$, and FF=62.37%, respectively.

Photocatalytic Degradation of Benzene in the Gas Phase using TiO2 Coated on Ceramic and Glass Beads (세라믹과 유리에 코팅한 TiO2 광촉매를 이용한 가스상 벤젠의 제거)

  • 손현석;양원호;김현용;이소진;박종래;조경덕
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2003
  • TiO$_2$ sol was prepared by sol-gel method, and this sol was coated in ceramic and glass bead by dip-coating method. The coated catalyst was applied to degrade benzene in the gas phase by exposing to UV -lamp (365 nm) in a batch reactor. The removal efficiency of the benzene was compared by changing various conditions such as the kind of chemical additives, the coating beads (ceramic and glass), solution pH, the initial concentration of TiO$_2$ sol, UV intensity, and benzene concentration. The physical structure of TiO$_2$ sol used in this study was found to be pu-rely anatase type from XRD analysis. The results showed that ceramic bead was effective as the coating agent rath-er than glass bead. The significant change in the benzene removal efficiency of benzene did not occur with chang-ing coating frequency and the initial concentration of TiO$_2$ sol. The removal efficiency of benzene increased with increasing UV intensity, and with acidic treatment of TiO$_2$-coated ceramic bead.