• Title/Summary/Keyword: $TiO_2$ morphology

Search Result 389, Processing Time 0.023 seconds

Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder (TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향)

  • Lim, Chang Sung;Oh, Won Chun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The reaction morphology was investigated depending on the amounts of HCl and $NH_4OH$, and the effect of pH was studied on the preparation of $TiO_2$ nanopowders. $TiO_2$ nanopowder was prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCl and $NH_4OH$. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4OH$, the morphology of the $TiO_2$ powder exhibited powder form. For the HCl catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of thecatalysts.

Morphology Effect on Electrocatalytic Activity of TiO2 Spheres Synthesized by Binary Ionic Liquids in Water Electrolysis

  • Hong, Ki-Won;Pak, Dae-Won;Yoo, Kye-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1829-1833
    • /
    • 2012
  • Titania spheres were synthesized using binary ionic liquids to examine the electrocatalytic activity in acid solution. The morphology of $TiO_2$ particles was significantly different with the composition of ionic liquids. Among the binary ionic liquids, four set of mixtures led to the formation of $TiO_2$ sphere with various sizes. The morphology and structure of $TiO_2$ particles were characterized by XRD, $N_2$ physisoption and SEM analysis. All samples possessed an anatase phase after calcinations at $500^{\circ}C$. The structural properties of the samples were varied significantly with the morphology. In cyclic voltammograms, the morphology of $TiO_2$ spheres affected the electrocatalytic activity in water electrolysis. Among the samples, [Omim][$BF_4$]+[Hmim][$BF_4$] was the most effective ionic liquid to synthesize $TiO_2$ sphere with optimum morphology showing the highest electocatalytic performance.

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-TiO2 Composite Coating Prepared by TiO2 Contents (TiO2 함량에 따르는 무전해 Ni-P-TiO2 복합도금층 특성 연구)

  • Byoun, Young-Min;Kim, Ho-Young;lee, Jae-Woong;Hwang, Hwan-il
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.187-193
    • /
    • 2019
  • Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, the effect of $TiO_2$ particles of composite coating was investigated. To improve the corrosion resistance, electroless $Ni-P-TiO_2$composite coating was studied by varying the $TiO_2$ content. The morphology and phase structure of $Ni-P-TiO_2$ composite coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The result showed that $Ni-P-TiO_2$composite coating is composed of Ni, P, Ti and O. It exhibits an amorphous structure, high hardness and good corrosion resistance to the substrate. $Ni-P-TiO_2$ composite coatings have higher open circuit potential than that of the substrate, which obtained at $TiO_2$ content of 5.0 g/L optimal integrated properties.

Structural and Morphological Behavior of TiO2 Rutile Obtained by Hydrolysis Reaction of Na2Ti3O7

  • Lee, Seoung-Soo;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1051-1054
    • /
    • 2004
  • The structural transformation behavior of $Na_2Ti_3O_7$ by hydrolysis was investigated in mild and strong acidic aqueous medium. Compared with $K_2Ti_4O_9,\;Na_2Ti_3O_7$ exhibits quite different structural and morphological transformation behavior despite their similar layered structural characteristics. $TiO_2(B)$ obtained by heat treatment of $H_2Ti_3O_7\;at\;350^{\circ}C$ transforms to rutile $H_2Ti_3O_7\;at\;900^{\circ}C$. This temperature is much lower than $1200{\circ}C$, the temperature for anatase to rutile transition when $K_2Ti_4O_9$ is used as a starting titanate. A rectangular rod shape and size of $TiO_2(B)$ particles obtained from $Na_2Ti_3O_7$ is also different from a fibrous structure of $TiO_2(B)$ prepared using $K_2Ti_4O_9$. Rutile crystals of 100 nm diameter with a corn-like morphology and large surface area are directly obtained when the hydrolysis of $Na_2Ti_3O_7$ is carried out at $100^{\circ}C$ in a strong acid solution. The structure of starting titanates and the hydrolysis conditions are an important factor to decide the particle size and morphology of $TiO_2(B)\;and\;TiO_2$.

Effect of Morphology on Electron Transport in Dye-Sensitized Nanostructured $TiO_2$ Films

  • Park, Nam-Gyu;Jao van de Lagemaat;Arthur J. Frank
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.199-202
    • /
    • 2003
  • The relationship between the morphology of nanostructured TiO$_2$ films and the photo-injected electron transport has been investigated using intensity-modulated photocurrent spectroscopy (IMPS). For this purpose, three different TiO$_2$ films with 5 ${\mu}{\textrm}{m}$ thickness are prepared: The rutile TiO$_2$ film with 500 nm-sized cluster-like spherical bundles composed of the individual needles (Tl), the rutile TiO$_2$ film made up of non-oriented, homogeneously distributed rod-shaped particles having a dimension of approximately 20${\times}$80 nm (T2), and the anatase TiO$_2$ film with 20 nm-sized spherically shaped particles (T3). Cross sectional scanning electron micrographs show that all of the TiO$_2$films have a quite different particle packing density: poorly packed Tl film, loosely packed T2 film and densely packed T3 film. The electron transport is found to be significantly influenced by film morphology. The effective electron diffusion coefficient D$_{eff}$ derived from the IMPS time constant is an order of magnitude lower for T2 than for T3, but the D$_{eff}$ for the Tl sample is much lower than T2. These differences in the rate of electron transport are ascribed to differences in the extent of interparticle connectivity associated with the particle packing density.ity.

  • PDF

Evaluation of OH Radical Generation to Nanotube Morphology of TiO2 Nanotube Plate (TiO2 nanotube plate의 nanotube 형태에 따른 OH radical 생성량 평가)

  • Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • In this study, a TiO2 nanotube was grown on a titanium plate by using anodic oxidation method for the evaluation of TiO2 nanotube morphology. The TiO2 nanotube was grown in an electrolyte containing ethylene glycol, 0.2 wt% of NH4F and 2 vol% of H2O. Applied voltage varied from 30 to 70 V and the morphology of the TiO2 nanotube was observed. After anodization, a TiO2 nanotube plate was immersed in 35℃ ethanol for 24 hours. Anatase and rutile crystal forms of TiO2 nanoutbe were observed after annealing. 4-chrolobenzoic acid, a probe compound for OH radicals, was dissolved in H2O in order to measure the OH radical. Liquid chromatography was used to check the concentration of the 4-chrolobenzoic acid. The OH radical generation by TiO2 nanotube plate was proportionate to the length of the TiO2 nanotube. Furthermore, when the number of TiO2 nanotube plate increased, the OH radical generation increased as well.

Preparation of $TiO_2$ thin films by coating-pyrolysis process of Ti-naphthenate (Ti-naphthenate의 코팅-열분해에 의한$TiO_2$ 박막의 제조)

  • 김진영;김승원;장우석;김현태;최상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2002
  • $TiO_2$ thin films were prepared by coating and subsequent pyrolysis processes using Titanium-naphthenate as a raw material. $TiO_2$ thin films were made by spin-coating technique on the glass substrates, and heat treated at 45$0^{\circ}C$, The transmittance, refractive index, crystallinity and surface morphology of the $TiO_2$ thin films were measured by UV/Vis spec trophotometer, x-ray diffractometer and scanning electron microscope. $TiO_2$thin films on the slide glass showed the trans mittance of 70-90% and refractive index of 2.6 at 420 nm. The results of XRD and SEM showed that the $TiO_2$ thin films exhibited the anatase phase and the thread-like surface morphology.

AFM morphology of $TiO_2$ electrode with differential sintering temperature and efficiency properties Dye-Sensitized solar cells (소결 온도 변화에 따른 $TiO_2$ 전극의 AFM 표면형상 비교 및 DSC 효율 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.461-462
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature(350 to $550^{\circ}C$). $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSC were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). From the measurement results, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSC were mutually complementary, enhancing highest fill factor and efficiency. Consequently, it was considered that optimum sintering temperature of $\alpha$-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

  • PDF

Preparation of $TiO_2$ nanopowder using titanium tetra-isopropoxide and effect of pH (Titanium tetra-isopropoxide를 이용한 $TiO_2$ Nanopowder 제초와 pH의 영향)

  • 임창성;오원춘;류정호;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • $TiO_2$ nanopowder was successfully prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCI and NH40H. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetraisopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4$OH, the morphology of the $TiO_2$ powder exhibited powder form. For the HCI catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of the catalysts.