• Title/Summary/Keyword: $TiO_2$ Thickness

Search Result 671, Processing Time 0.031 seconds

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Reaction Bonding of $ZrO_2$ and NiTi : Reaction Products Analyses on $ZrO_2/NiTi$ Bonding Interface with AEM ($ZrO_2$와 NiTi 합금의 반응접합 : 분석투과전자현미경을 이용한 $ZrO_2/NiTi$ 접합층 반응생성물 분석)

  • Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.949-954
    • /
    • 1993
  • Microstructural development at the ZrO2/NiTi bonding interface and reaction products were examined and identified with SEM and AEM. Ti-oxide, Ti2Ni and Ni2Ti layer were observed whose thickness depends on bonding temperature typically. The development of Ti-oxide layer is related with oxygen ion in ZrO2 and liquid phase Ti2Ni. It is considered that compositional deviation from homogeneity and residual stress caused by thermal expansion mismatch are closely related with the formation of the Ti2Ni phase.

  • PDF

Growth of Atomic Layer Deposition Platinum on TiO2 (이산화 티타늄 위에서의 원자층 증착법 백금의 성장 특성)

  • Kim, Hyun Gu;Lee, Han-Bo-Ram
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.38-42
    • /
    • 2015
  • Atomic layer deposition (ALD) is essential for the fabrication of nanoscale electronic devices because it has excellent conformality, atomic scale thickness control, and large area uniformity. Metal thin films are one of the important material components for electronic devices as a conductor. As the size of electronic devices shrinks, the thickness of metal thin films is decreased down to few nanometers, and the metal films become non-continuous due to inherent island growth of metal below a critical thickness. So, fabrication of continuous metal thin films by ALD is fundamentally and practically important. Since ALD films are grown through self-saturated reactions between precursors on surface, initial growth characteristics significantly depend on the surface properties and the selection of precursors. In this work, we investigated ALD Pt on $TiO_2$ substrate by using trimethyl-methyl-cyclopentadienyl-Platinum ($MeCpPtMe_3$) precursor and $O_3$ reactant. By using $O_3$ instead of $O_2$, initial nucleation rate of ALD Pt was increased on $TiO_2$ surface, resulting in formation of continuous thin Pt films. Morphologies of ALD Pt on $TiO_2$ were characterized by using Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Crystallinity of ALD Pt on $TiO_2$ correlated with its growth characteristics was analyzed by X-Ray Diffraction (XRD).

Growth mechanism of three dimensionally structured TiO2 thin film for gas sensors (가스 감응용 3차원 구조체 TiO2 박막 성장기구)

  • Moon, Hi-Gyu;Yoon, Seok-Jin;Park, Hyung-Ho;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • Polystyrene (PS) microspheres were used to good advantage as a template material to prepare macroporous $TiO_2$ thin films. This is enabled to run the thermal decomposition of the PS without the collapsing of the 3-D macroporous framework during the calcination step. $TiO_2$ thin films were deposited onto the colloidal templated substrates at room temperature by RF sputtering, and then samples were thermally treated at $450^{\circ}C$ for 40.min in air to remove the organic colloidal template and induce crystallization of the $TiO_2$ film. The macroporous $TiO_2$ thin film exhibited a quasi-ordered partially hexagonal close-packed structure. Burst holes, estimated to be formed during PS thermal decomposition, are seen as the hemisphere walls. the inner as well as the outer surfaces of the hollow hemispheres formed by the method of thermal decomposition can be easily accessed by the diffusing gas species. As a consequence, the active surface area interacting with the gas species is expected to be enlarged about by a factor of fourth as large as compared to that of a planar films. Also the thickness at neighboring hemisphere could be controlled a few nm thickness. If the acceptor density becomes as large that depletion width reaches those thickness, the device is in the pinch off-situation and a strong resistance change should be observed.

Characteristics of Alumina-Supported TiO2 Composite Ultrafiltration Membranes Prepared by the Sol-Gel Method (Sol-Gel 법으로 제조한 알루미나 담체의 $TiO_2$ 복합 한외여과막의 특성)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1992
  • Alumina supports for TiO2 ultrafiltration membrane coating were prepared by presintering disk-type preforms at 140$0^{\circ}C$. These supports showed uniform microstructures which had the apparent porosity of 40%, the pore size distribution in the range of 0.1~0.5${\mu}{\textrm}{m}$, and the water flux of 1400ι/$m^2$.h at the pressure difference of 10 atm. The optimum pH and concentration of the TiO2 sol for coating were 0.8 and 1.0 wt%, respectively, and sol particles were identified as rutile forms of 20 nm size. Crack-free alumina-supported rutile TiO2 membranes could be prepared through well controlled drying and heating the gel layer coated by the sol-gel dipping. The pore size of the TiO2 membranes heat-treated at 50$0^{\circ}C$ for 2 hrs was 30~80$\AA$, and their thickness varied from 1.1 to 3.8 ${\mu}{\textrm}{m}$ in accordence with the dipping time (4~40 min). The flux of water through this composite membrane at 10 atm was found to be in the range from 800 to 1100ι/$m^2$.hr depending on the dipping time (10~40 min). The membrane thickness increased linearly with the square root of the dipping time and the slope was 0.62 ${\mu}{\textrm}{m}$/{{{{ SQRT { min} }}.

  • PDF

Atomic Layer Deposition for Energy Devices and Environmental Catalysts

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.2-77.2
    • /
    • 2013
  • In this talk, I will briefly review recent results of my group related to application of atomic layer deposition (ALD) for fabricating environmental catalysts and organic solar cells. ALD was used for preparing thin films of TiO2 and NiO on mesporous silica with a mean pore size of 15 nm. Upon depositing TiO2 thin films of TiO2 using ALD, the mesoporous structure of the silica substrate was preserved to some extent. We show that efficiency for removing toluene by adsorption and catalytic oxidation is dependent of mean thickness of TiO2 deposited on silica, i.e., fine tuning of the thickness of thin film using ALD can be beneficial for preparing high-performing adsorbents and oxidation catalysts of volatile organic compound. NiO/silica system prepared by ALD was used for catalysts of chemical conversion of CO2. Here, NiO nanoparticles are well dispersed on silica and confiend in the pore, showing high catalytic activity and stability at 800oC for CO2 reforming of methane reaction. We also used ALD for surface modulation of buffer layers of organic solar cell. TiO2 and ZnO thin films were deposited on wet-chemically prepared ZnO ripple structures, and thin films with mean thickness of ~2 nm showed highest power conversion efficiency of organic solar cell. Moreover, performance of ALD-prepared organic solar cells were shown to be more stable than those without ALD. Thin films of oxides deposited on ZnO ripple buffer layer could heal defect sites of ZnO, which can act as recombination center of electrons and holes.

  • PDF

Characteristics of $TiO_2-$SnO_2$ Thin Films Fabricated Using Sol-Gel Method (솔-젤법에 의해 제작된 $TiO_2-$SnO_2$ 박막의 특성)

  • You, Do-Hyun;Yuk, Jae-Ho;Lim, Kyung-Bum
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.511-516
    • /
    • 2002
  • $TiO_2-SnO_2$ thin films are fabricated using sol-gel method. In case the amount of water required hydrolysis smaller than that for stoichiometry, Ti sol forms clear sol which has normal chain structure. On the contrary, in case the amount of water required hydrolysis larger than that for stoichiometry, Ti sol forms suspended sol which has cluster structure. The thickness of thin films increase about $0.03{\sim}0.04{\mu}m$ every a dipping. The permittivity and dissipation factor of $TiO_2-SnO_2$ thin films decrease with increasing frequency. Thin films show semiconductive characteristics above $400^{\cric}C$.

Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder (타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성)

  • Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

Analysis of the Sol-Gel Coating Process for the Preparation of Supported TiO2 Composite Membranes ($TiO_2$ 복합 분리막의 제조를 위한 졸-겔 코팅공정 분석)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.403-409
    • /
    • 1992
  • The titania membrane thickness coated on the porous alumina support by the sol-gel method was analyzed using the slipcasting model. The thickness of calcined membrane layers increased linearly from 1.3 to 3.8 ${\mu}{\textrm}{m}$ with the square root of the dipping time (4~40 min). Growth rates of the thickness of wet gels and calcined layers were well described quantitatively by the slipcasting model. Through the regression of experimental data using model equations, the permeability and the pressure drop across wet gels, and the thickness and their growth rate constants of wet gels and calcined layers could be determined. It was also known that the gellation concentration of the TiO2 sol used in this work and the porosity of wet gel layes were 25 mol/ι and 0.53, respectively.

  • PDF

Synthesis and characterization Au doped TiO2 film for photocatalytic function

  • Son, Jeong-Hun;Bae, Byung-Seo;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.280-284
    • /
    • 2015
  • Au doped $TiO_2$ nanoparticles have been synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Au doped $TiO_2$ was coated with glass substrate. The size of the particles and thickness of the coating can be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TTIP within the micro-emulsion. The average size of synthesized Au doped $TiO_2$ nanoparticle was about in the size range of 15 to 25 nm and the Au particles formed mainly the range of 2 to 10 nm in diameter. The effect of synthesis parameters, such as the molar ratio of water to TTIP and the molar ratio of water to surfactant, are discussed. The synthesized nanopaticles were coated on glass substrate by a spin coating process. The thickness of thin film was about 80 nm. The degradation of MB on a $TiO_2$ thin film was enhanced over 20 % efficiency by the incorporation of Au.