• Title/Summary/Keyword: $TiO_2$ Photocatalyst

Search Result 463, Processing Time 0.024 seconds

Comparison of OH radical generation depending on anatase to rutile ratio of TiO2 nanotube Photocatalyst (Anatase와 Rutile 결정상 비율에 따른 TiO2 nanotube의 OH radical 생성량 비교 연구)

  • Lee, Hyojoo;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.550-556
    • /
    • 2019
  • This study was carried out to improve the photocatalytic reaction of TiO2 photocatalyst. During the photocatalytic reaction, OH radicals are generated and they have an excellent oxidation capability for wastewater treatment. To evaluate the OH radicals generated according to crystallographic structure of TiO2 nanotubes photocatalyst, a probe compound, 4-Chlorobenzoic acid was monitored to evaluate OH radical. Ultraviolet light was applied for photocatalytic reaction of TiO2. The 4-Chlorobenzoic acid solution was prepared at laboratory. TiO2 nanotube was grown on titanium plate by using anodization method. The annealing temperature for TiO2 nanotube was varied from 400 to 900 ℃ and the crystal forms of the TiO2 nanotube was analyzed. Depending on annealing temperature, TiO2 nanotubes have shown different crystal forms; 100% anatase (0 % rutile), 18.4 % rutile (81.6 % anatase), 36.6 % rutile (63.4 % anatase) and 98.6% rutile (1.4% anatase). As the annealing temperature increases, the rutile ratio increases. OH radical generation from 18.4 % rutile TiO2 nanotube plate was about 3.8 times higher than before annealing and 1.4 times higher than only 100 % anatase-TiO2 nanotube. The efficiency of the 18.4% rutile TiO2 nanotube was the best in comparison to TiO2 nanotube with 18.4 %, 36.6 % and 98.6 % rutile. As a result, photocatalytic ability of 18.4 % rutile-TiO2 nanotube plate was higher than 100 % anatase-TiO2 nanotube plate.

The Properties of VOCs(Benzene, Toluene) with NOx Removal in Exposed Concrete With $TiO_2$(Anatase type) Powder as Photocatalyst (이산화티탄($TiO_2$ anatase) 분말을 광촉매로 사용한 노출 콘크리트의 VOCs(Benzene, Toluene)와 질소산화물(NOx) 제거 특성 연구)

  • Kim, Kwang-Ryeon;Lee, Dong-Bum;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.588-591
    • /
    • 2004
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like VOCs(Volatile Organic Compounds) and NOx. In this study, $TiO_2$ was substituted for exposed concrete to investigate the purifying degree of VOCs(Benzene, Toluene) and NOx. Anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. $3\%$ substitution of $TiO_2$ with the sunray was enough to purify VOCs(Benzene, Toluene) and NOx efficiently.

  • PDF

The Properties of NOx Removal in Cement Mortar With $TiO_2$ Powder as photocatalyst (이산화티탄($TiO_2$) 분말을 광촉매로 사용한 시멘트 모르터의 질소산화물(NOx) 제거 특성)

  • 김광련;이동범;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.671-674
    • /
    • 2003
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like NOx. In this study, $TiO_2$ was substituted for cement to investigate the purifying degree of NOx. Rutile and anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. 3% substitution of TiO$_2$ with the sunray was enough to purify NOx efficiently.

  • PDF

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method (마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구)

  • Lee, SiJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.5-10
    • /
    • 2019
  • For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst (Mn-TiO2 촉매의 가시광촉매 특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • The catalyst works for visible-light region was characterized. Toluene, xylene, MEK and ammonia were used as reactants. The decomposition efficiency was compared between visible-light photocatalyst and UV-light one. UV-photocatalyst can be activated with UV-light wave length of 280~360 nm. However, visible-light photocatalyst can be activated with visible wave length of 400~750 nm. This result was found by using UV-Vis absorbance. A lot of materials were doped to visible light photocatalyst in order to increase its performance. Platinum was added to visible light photocatalyst with manganese in order to increase performance of the visible light photocatalyst. MTMS (Methyl tri methoxy silane) was used as a binder. Contact angle was analyzed varying with amount of binder. Contact angle was increased with increasing the amount of MTMS. As a result, the hydrophilic property of photocatalyst with MTMS binder was decreased due to its hydrophobic one. And Mn-$TiO_2$ catalyst had an excellent anti-bacterial property.

Enhancement of NOx photo-oxidation by Fe-doped TiO2 nanoparticles

  • Martinez-Oviedo, Adriana;Ray, Schindra Kumar;Gyawali, Gobinda;Rodriguez-Gonzalez, Vicente;Lee, Soo Wohn
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.3
    • /
    • pp.222-230
    • /
    • 2019
  • Microwave hydrothermal-assisted sol-gel method was employed to synthesize the Fe doped TiO2 photocatalyst. The morphological analysis suggests anatase phase nanoparticles of ~20 nm with an SBET area of 283.99 ㎡/g. The doping of Fe ions in TiO2 created oxygen vacancies and Ti3+ species as revealed through the XPS analysis. The reduction of the band gap (3.1 to 2.8 eV) is occurred by doping effect. The as-prepared photocatalyst was applied for removal of NOx under solar light irradiation. The doping of Fe in TiO2 facilitates 75 % of NOx oxidation efficiency which is more than two-fold enhancement than the TiO2 photocatalyst. The possible reason of enhancement is associated with high surface area, oxygen vacancy, and reduction of the band gap. Also, the low production of toxic intermediates, NO2 gas, is further confirmed by Combustion Ion Chromatography. The mechanism related NOx oxidation by the doped photocatalyst is explained in this study.

Wastewater Treatment by using a Rotating Photocatalitic Oxidation Disk System (회전광촉매 시스템에 의한 폐수처리)

  • Chung, Ho Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.497-502
    • /
    • 2009
  • The wastewater treatment by photocatalyst decomposes pollutants directly in water, and it is easy to decompose indecomposable organics and inorganic. and Especially, it has an advantage that there is no secondary production of pollutants. However, there will be many problems which are generated depending on the type of photocatalyst. The type of rotating photocatalyst minimizes previous problems, and advanced oxidation processes is possible by the application of rotating disc method. The consideration of the characteristics about various designs and operation factors is needed for the application of rotating photocatalyst system. In this study, rotating photocatalyst was manufactured for rotating disc method by fixing of $TiO_2$. The operation factors were derived for the wastewater treatment by the reaction of rotating photocatalyst. The contained quantity of $TiO_2$ was limited about 70%. The more the contained quantity of $TiO_2$ was increased, the more the treatment rate was continually increased. The optimum rotating photocatalyst was R4, and the contained quantity of $TiO_2$ was 36.8%. The more the exposed amount of UV is increased, the more the decomposition effect of TCODcr was continually increased. However, the adequate strength of light source must be determined by the consideration of economical efficiency. The more the speed of rotating photocatalyst is increased, the more treatment efficiency was increased. When UV lamp was not submerged in reactor, the wastewater treatment was efficient in the order of the depth of water 50%, 30%, 10%, 70%, 100%. This study is a basic research for the development of a system which treats organics in solar light.

Preparation of Co-ACFs/TiO2 composites and its photodegradation of methylene blue (Co-ACFs/TiO2 복합체의 제조 및 그의 메틸렌블루의 광분해)

  • Oh, Won-Chun;Kwon, Ho-Jung;Chen, Ming-Liang;Zhang, Feng-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3031-3038
    • /
    • 2009
  • Cobalt-loaded activated carbon fibers (ACFs) supported titanium dioxide ($TiO_2$) photocatalyst was developed by sol-gel method. The Co-ACFs/$TiO_2$ photocatalyst were characterized by scanning electron microscope (SEM), X.ray diffraction patterns (XRD), energy dispersive X.ray analysis (EDX) and UV-vis absorption spectroscopy. Decomposition efficiency of methylene blue (MB) solution by Co-ACFs/$TiO_2$ photocatalyst reached almost 100% under 300 min reaction. The MB molecules in the bulk solutions were supposed to be condensed around $TiO_2$ particles by adsorption of ACFs. Therefore, the photocatalyst possesses the combined effect of adsorption by activated carbon fibers and photocatalytic reactivity of $TiO_2$ on MB degradation. Due to the cobalt has electron transition effece, thus improved the photodegradation of MB solution.

A Study on the Dye Wastewater Treatment Using TiO2 Photocatalyst/Ozonation (광촉매/오존을 이용한 염색폐수처리에 관한 연구)

  • Kim, Chang-Kyun;Chung, Ho-Jin;Kim, Jong-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis and ozonation for the treatment of dye wastewater. The treatability of dye wastewater by $UV/TiO_2$ and $UV/TiO_2/O_3$ advanced oxidation process (AOP) was investigated under various conditions. The experiments were conducted in a batch reactor of 50 liters equipped with twelve UV Lamps of 16W. In $UV/TiO_2$ AOP, the removal efficiency of TCODMn and Color increased to 58% and 67% respectively with increasing UV intensity. Also, The removal efficiency of TCODMn and Color increased to 97% and 99% respectively with increasing $H_2O_2$. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and pH 5 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, TCODMn was removed faster than Color.