• Title/Summary/Keyword: $TiO(OH)_2$

Search Result 665, Processing Time 0.025 seconds

A Study on the Effects of $TiO_2$ and $Al(OH)_3$ for ZnO Ceramic Varistor (ZnO Ceramic Varistor에 미치는 $TiO_2$$Al(OH)_3$의 영향)

  • 안영필;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.287-292
    • /
    • 1982
  • Nonohmic properties of ZnO ceramics with various small amounts of additives were studied in relation to experimental methods, additive contant and sintaring temperature. The kinds of additives used to following chemicals were basic additives ($0.5Bi_2O_3$, $0.3BaCO_3$, $0.5MnCO_3$, $0.5Cr_2O_3$, $0.1KNO_3$), $TiO_2$ and $Al(OH)_3$. Expecially, this study has focused on the effectsof $TiO_2$ and $Al(OH)_3$ in ZnO ceramics with the basic additives. SEM studies indicated that the addition of TiO2 promoted grain growth but retarded grain growth with the addition of $Al(OH)_3$. Also, in the case of calcination of ZnO with $TiO_2$ and ZnO with $Al(OH)_3$ previously, grain size of ZnO with $TiO_2$ was larger and that of ZnO with Al(OH)3 was smaller in comparison to the case with out calcination. From the viewpoint of nonohmic exponent and nonohimic resistance, electrical characteristics of ZnO, $TiO_2$ and the basic additives was more effective than that of ZnO, $Al(OH)_3$ and the basic additives. Nonohmic exponent and nonohmic resistance of ZnO, $TiO_2$ and the basic additives was 11-13 and 40-65 respectively.

  • PDF

Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder (TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향)

  • Lim, Chang Sung;Oh, Won Chun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The reaction morphology was investigated depending on the amounts of HCl and $NH_4OH$, and the effect of pH was studied on the preparation of $TiO_2$ nanopowders. $TiO_2$ nanopowder was prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCl and $NH_4OH$. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4OH$, the morphology of the $TiO_2$ powder exhibited powder form. For the HCl catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of thecatalysts.

Comparison of OH radical generation depending on anatase to rutile ratio of TiO2 nanotube Photocatalyst (Anatase와 Rutile 결정상 비율에 따른 TiO2 nanotube의 OH radical 생성량 비교 연구)

  • Lee, Hyojoo;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.550-556
    • /
    • 2019
  • This study was carried out to improve the photocatalytic reaction of TiO2 photocatalyst. During the photocatalytic reaction, OH radicals are generated and they have an excellent oxidation capability for wastewater treatment. To evaluate the OH radicals generated according to crystallographic structure of TiO2 nanotubes photocatalyst, a probe compound, 4-Chlorobenzoic acid was monitored to evaluate OH radical. Ultraviolet light was applied for photocatalytic reaction of TiO2. The 4-Chlorobenzoic acid solution was prepared at laboratory. TiO2 nanotube was grown on titanium plate by using anodization method. The annealing temperature for TiO2 nanotube was varied from 400 to 900 ℃ and the crystal forms of the TiO2 nanotube was analyzed. Depending on annealing temperature, TiO2 nanotubes have shown different crystal forms; 100% anatase (0 % rutile), 18.4 % rutile (81.6 % anatase), 36.6 % rutile (63.4 % anatase) and 98.6% rutile (1.4% anatase). As the annealing temperature increases, the rutile ratio increases. OH radical generation from 18.4 % rutile TiO2 nanotube plate was about 3.8 times higher than before annealing and 1.4 times higher than only 100 % anatase-TiO2 nanotube. The efficiency of the 18.4% rutile TiO2 nanotube was the best in comparison to TiO2 nanotube with 18.4 %, 36.6 % and 98.6 % rutile. As a result, photocatalytic ability of 18.4 % rutile-TiO2 nanotube plate was higher than 100 % anatase-TiO2 nanotube plate.

Hydrothermal synthesis of $BaTiO_3$ fine particles (수열법에 의한 $BaTiO_3$ 미립자의 합성)

  • 최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • $BaTiO_3$ fine particles were synthesized by hydrothermal method. $TiO_2$ and $Ba(OH)_2{\cdot}8H_2O$ were used as staring materials, and it was possible to synthesize $BaTiO_3$ fine particles in pure water by using excess $Ba(OH)_2{\cdot}8H_2O$. The shape of synthesized particles are irregular but near spherical, and the particle size depends on the temperature and Ba/Ti atomic ratio.

  • PDF

Evaluation of OH Radical Generation to Nanotube Morphology of TiO2 Nanotube Plate (TiO2 nanotube plate의 nanotube 형태에 따른 OH radical 생성량 평가)

  • Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • In this study, a TiO2 nanotube was grown on a titanium plate by using anodic oxidation method for the evaluation of TiO2 nanotube morphology. The TiO2 nanotube was grown in an electrolyte containing ethylene glycol, 0.2 wt% of NH4F and 2 vol% of H2O. Applied voltage varied from 30 to 70 V and the morphology of the TiO2 nanotube was observed. After anodization, a TiO2 nanotube plate was immersed in 35℃ ethanol for 24 hours. Anatase and rutile crystal forms of TiO2 nanoutbe were observed after annealing. 4-chrolobenzoic acid, a probe compound for OH radicals, was dissolved in H2O in order to measure the OH radical. Liquid chromatography was used to check the concentration of the 4-chrolobenzoic acid. The OH radical generation by TiO2 nanotube plate was proportionate to the length of the TiO2 nanotube. Furthermore, when the number of TiO2 nanotube plate increased, the OH radical generation increased as well.

Preparation of $TiO_2$ nanopowder using titanium tetra-isopropoxide and effect of pH (Titanium tetra-isopropoxide를 이용한 $TiO_2$ Nanopowder 제초와 pH의 영향)

  • 임창성;오원춘;류정호;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • $TiO_2$ nanopowder was successfully prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCI and NH40H. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetraisopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4$OH, the morphology of the $TiO_2$ powder exhibited powder form. For the HCI catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of the catalysts.

Preparationof High Purity, Submicron BaTiO3 Powder Prepared by Hydrothermal Reaction (수열반응에 의한 고순도 극미립자 BaTiO3 분말합성)

  • 김경용;김윤호;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.493-498
    • /
    • 1989
  • High purity, submicron BaTiO3 powder was prepared by a hydrothermal technique using Ba(OH)2.8H2O, TiCl4 and NH4OH as starting raw materials. The submicron BaTiO3 powder was synthesized at 130~23$0^{\circ}C$ for 2.5h to yield highly crystalline particles with a narrow particle distribution. The mole ratio of Ba(OH)2.8H2O/TiO(OH)2 was 1.5. It is possible to obtain BaTiO3 with Ba : Ti=1.00$\pm$0/01. The samples densified well at 13$25^{\circ}C$, showing a uniform and fine grain structure. The grain size ranged between 0.3 and 0.5${\mu}{\textrm}{m}$. The products obtained by hydrothermal treatment at various temperatures from 130 to 23$0^{\circ}C$ were characterized by XRD, DTA, BET and SEM etc.

  • PDF

Study of CO Oxidation on Bare and $TiO_2$-coated NiO/$Ni(OH)_2$

  • Nam, Jong-Won;Kim, Kwang-Dae;Kim, Dong-Wun;Seo, Hyun-OoK;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.109-109
    • /
    • 2011
  • CO oxidaition reacitvity of bare and $TiO_2$ -coated NiO/$Ni(OH)_2$ nanoparticles was studied. For the deposition of $TiO_2$ atomic layer deposition was used, and formation of three-dimensional island of $TiO_2$ on NiO/$Ni(OH)_2$ could be identified. Based on the data of X-ray Photoelectron Spectroscopy, we suggest that only $Ni(OH)_2$ existed on the surface, whereas NiO disappeared upon $TiO_2$ deposition. Both CO adsorption and CO oxidation took place on NiO/$Ni(OH)_2$ surfaces under our experimental conditions. CO adsorption was completely suppressed after $TiO_2$ deposition, whereas CO oxidation activity was maintained to large extent. It is proposed that bare NiO can uptake CO under our experimental condition, whereas hydroxylated surface of NiO can be active for CO oxidation.

  • PDF

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.

Chemical Binding States of Ti and O Elements in Anodic Ti Oxide Films (Ti 양극산화 피막에서 Ti 및 O원소의 화학결합 상태)

  • 유창우;오한준;이종호;장재명;지충수
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.383-390
    • /
    • 2002
  • To investigate behaviors of Ti and O elements and microstructures of anodic titanium oxide films, the films were prepared by anodizing pure titanium in $H_2$S $O_4$, $H_3$P $O_4$, and $H_2O$$_2$ mixed solution at 180V. The microstructures and chemical states of the elements were analyzed using SEM, X-ray mapping, AFM, XRD, XPS (depth profile). The films formed on a titanium substrate showed porous layers which were composed of pore and wall, And with increasing anodizing time a hexagonal shape of cell structures were dominant and solace roughness increased. From the XRD result the structure of the Ti $O_2$ layer was anatase type of crystal on the whole. In the XPS spectra it was found that Ti and O were chemically binded in forms of Ti $O_2$, TiOH, $Ti_2$ $O_3$ at Ti 2p, and Ti $O_2$, $Ti_2$ $O_3$, $P_2$ $O_{5}$, S $O_4^{2-}$ at O ls respectively. Concentration of Ti $O_2$ decreased as the depth increased from the surface of the oxide film towards the substrate, but to the contrary concentrations of TiOH and $Ti_2$ $O_3$ increased.d.