• Title/Summary/Keyword: $TiH_2-MoO_3$ powder

Search Result 5, Processing Time 0.023 seconds

Effect of Heat Treatment Atmosphere on the Microstructure of TiH2-MoO3 Powder Mixtures (열처리 분위기가 TiH2-MoO3 혼합분말의 미세조직 특성에 미치는 영향)

  • Jeon, Ki Cheol;Park, Sung Hyun;Kwon, Na-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.303-306
    • /
    • 2016
  • An optimum route to synthesize Ti-Mo system powders is investigated by analyzing the effect of the heat treatment atmosphere on the formation of the reaction phase by dehydrogenation and hydrogen reduction of ball-milled $TiH_2-MoO_3$ powder mixtures. Homogeneous powder mixtures with refined particles are prepared by ball milling for 24 h. XRD analysis of the heat-treated powder in a hydrogen atmosphere shows $TiH_2$ and $MoO_3$ peaks in the initial powders as well as the peaks corresponding to the reaction phase species, such as $TiH_{0.7}$, TiO, $MoO_2$, Mo. In contrast, powder mixtures heated in an argon atmosphere are composed of Ti, TiO, Mo and $MoO_3$ phases. The formation of reaction phases dependent on the atmosphere is explained by the partial pressure of $H_2$ and the reaction temperature, based on thermodynamic considerations for the dehydrogenation reaction of $TiH_2$ and the reduction behavior of $MoO_3$.

New Hypothesis "Exhaustion of Diffusion-Contributable Vacancies in Core/Rim Structure"

  • Hayshi, Koji;Yanaba, Yutaka
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.8-8
    • /
    • 2002
  • TiC core/(Ti,Mo)C rim structure in TiC-$Mo_2C$-Ni base cermet which is generally prepared by sintering below 145$0^{\circ}C$ had been believed to be generated by the solid diffusion of Mo atoms 1 into TiC grains (D. Moskowitz and M.Humenik, 1r.:1966). Afterward, it was clarified that the c core/rim structure is generated by solution/re-precipitation mechanism : (1) $Mo_2C$ grains and s small TiC grains dissolve into the Ni liquid, (2) the dissolved Mo, Ti and C atoms migrate to the s surface of TiC coarse grains, (3) the Mo, Ti and C precipitate on the surface of TiC coarse g grains and form (Ti,Mo)C solid solution rim, and (4) the Ostwald ripening (grain growth by s solution/re-precipitation mechanism) of TiC-core/(Ti,Mo)-rim grains continues, and thus the w width of (Ti,Mo)C rim (at the same time, the grain size) increases with sintering time, etc. ( (H.Suzuki, K.Hayashi and O.Terada: 1973). The TiC-core was found not to disappear even by s sintering at 190$0^{\circ}C$ (ibid.: 1974) Recently, FeSi core/$Fe_2Si_5$-rim structure in Fe-66.7at%Si thermoelectric aIloy was found to also h hardly shrink and disappear by long heating at an appropriate temperature (1999: M.Tajima and K K.hayashD. Then, the authors considered its cause, and clarified experimentaIly that the disappearance of FeSi-core/$Fe_2Ski_5$-rim structure could be attributed to the exhaustion of diffusion-contributable vacancies in core/rim structure (N.Taniguchi and K.Hayashi:2001). At p present, the authors and my coworker are investigating whether the non-disappearance of TiC c core can be explained also from the new hypothesis "Exhaustion of diffusion-contributable v vacancies in corelrim structure".ure".uot;.

  • PDF

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Mo-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1263-1271
    • /
    • 2013
  • Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

Preparation of TiO2-SiO2 Powder by Modified Sol-Gel Method and their Photocatalytic Activities (수식 졸-겔법에 의한 TiO2-SiO2분체합성 및 광촉매활성)

  • Kim, Byung-Kwan;Mizuno, Noritaka;Yasui, Itaru
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1042
    • /
    • 1996
  • Various $TiO_2-SiO_2$ composite powders were prepared by the modified sol-gel method using 1-dodecanol as DCCA (Dryng Control Chemical Additive ). Their characterizations were carried out and their photocatalytic catalysis was examined on the evolution reaction of hydrogen. The weight losses at $500^{\circ}C$ of only $TiO_2$ and $SiO_2$ powders were 33. 0wt% and 42.5wt%, respectively, and those of the $TiO_2/SiO_2$ powders ($TiO_2/SiO_2=25/75$, 50/50 and 75/25) were about $70.0{\pm}3.0wt%$. The released substances from the powders were almost organic matters. The as-prepared powders except only $TiO_2$ powder were amorphous. Transformation of anatase to rutil was hindered by $SiO_2$ component and the crystallinity of anatase was decreased with increasing $SiO_2$ contents. The as-prepared powders were bulky states. By heating at $600^{\circ}C$ for 1 hr $TiO_2-SiO_2$ powders ($TiO_2=100%$, $TiO_2/SiO_2=75/25,\;50/50$) showed agglomerates consisted of particles in submicron, but those of $TiO_2/SiO_2=25/75$ and $SiO_2=100%$ were still bulky states. Specific surface area of the powders heat-treated at $600^{\circ}C$ for 1hr was increased with $SiO_2$ concents and their pore sizes were also depended on $SiO_2$ contents. The photocatalytic activity of $TiO_2/SiO_2=75/25$ heat-treated at $600^{\circ}C$ for 1hr was 0.240mo1/h.g-cat as $H_2$ evolution rate. This value was about 2.0 times that of P-25(Degussa P-25) as a standard photocatalyst.

  • PDF

EFFECT OF PROCESS CONTROL AGENT ON THE MICROSTRUCTURE OF Ni-BASED ODS SUPERALLOY PRODUCED BY MECHANICAL ALLOYING AND SINTERING

  • JU-YEON HAN;HYUNJI KANG;SUNG-TAG OH
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.949-952
    • /
    • 2019
  • The effects of different types of process control agents (PCA) on the microstructure evolution of Ni-based oxide dispersion-strengthened superalloy have been investigated. Alloy synthesis was performed on elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % using high energy ball milling for 5 h. The prepared powders are consolidated by spark plasma sintering at 1000℃. Results indicated that the powder ball-milled with ethanol as PCA showed large particle size, low carbon content and homogeneous distribution of elemental powders compared with the powder by stearic acid. The sintered alloy prepared by ethanol as PCA exhibited a homogeneous microstructure with fine precipitates at the grain boundaries. The microstructural characteristics have been discussed on the basis of function of the PCA.